Skip to main content
Log in

Electrochemical microgravimetric study on microcrystalline particles of phenazine attached to gold electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Phenazine solid crystals have been attached to gold electrodes and investigated by cyclic and potential step electrochemical quartz crystal microbalance (ECQM) measurements in the presence of aqueous acidic media. The freshly deposited phenazine layers exhibit a break-in phenomenon. The number of potential cycles required for the layer to be fully electroactive depends on its thickness and also on the nature and concentration of the supporting electrolyte as well as on the scan rate. After the break-in, a considerable amount of solvent molecules remains embedded in the surface layer. The protonated and unprotonated forms of phenazine, whose relative amounts depend on the pH of the contacting solutions, are reduced at different potentials; however, the stable product of the first electron transfer is the respective phenazylium salt. During the second reduction step 5,10-dihydrophenazine and charge-transfer complexes of different compositions are formed. Both the current and microgravimetric responses supplied evidences for the structural rearrangements of the solid phases that accompany the redox reactions. The large separation of the reduction and oxidation peaks relates to the additional energy needed to create the solid/solid interface between the reduced and unreduced or partially reduced forms. The chronoamperometric response shows the characteristics of nucleation and growth kinetics. The phase transformation proceeds with the release of hydration water, and the EQCM response is affected by the strain that develops as a consequence of the phase transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2a, b
Fig. 3
Fig. 4
Fig. 5a, b
Fig. 6a, b
Fig. 7a, b
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ramage GR,Lundquist JK(1959) Compounds containing a six membered ring with two hetero atoms.The diazines. In: Rodd EH (ed.) Chemistry of carbon compounds, vol. IVB. Heterocyclic compounds. Elsevier, Amsterdam, pp.1374,1386

  2. Müller OH, Baumberger JP (1937) Trans Electrochem Soc 71:181

    Google Scholar 

  3. Kaye RC, Stonehill HJ (1952) J Chem Soc (London) 3240

  4. Bailey DN, Hercules DM, Roe DK (1969) J Electrochem Soc 116:190

    CAS  Google Scholar 

  5. Bailey DN, Roe DK, Hercules DM (1968) J Am Chem Soc 90:6291

    CAS  Google Scholar 

  6. Klatt LN, Rouseff RL (1972) J Am Chem Soc 94:7295

    CAS  Google Scholar 

  7. Volke J, Beran S (1975) Coll Czechoslov Chem Commun 40:2232

    CAS  Google Scholar 

  8. Laviron E, Roullier L (1983) J Electroanal Chem 157:7

    Article  CAS  Google Scholar 

  9. Roullier L, Waldner E, Laviron E (1985) J Electrochem Soc 132:1121

    CAS  Google Scholar 

  10. Baumgärtel H, Retzlav K-J (1984) In: Bard AJ, Lund H (eds) Encyclopedia of electrochemistry of elements, vol. XV, Dekker, New York, pp 241–265

  11. Takahashi M, Goto M, Ito M (1989) J Electroanal Chem 51:177

    Article  Google Scholar 

  12. Inzelt G, Puskás Z (2004) Electrochim Acta 49:1969

    Article  CAS  Google Scholar 

  13. Scholz F, Nitschke L, Henrion G (1989) Naturwissenschaften 76:71

    CAS  Google Scholar 

  14. Scholz F, Nitschke L, Henrion G, Damaschun F (1989) Naturwissenschaften 76:167

    CAS  Google Scholar 

  15. Scholz F, Meyer B (1998) Voltammetry of solid microparticles immobilized on electrode surfaces. In: Bard AJ, Rubinstein I (eds) Electroanalytical chemistry, vol. 20. Dekker, New York, pp 1–86

  16. Fiedler DA, Scholz F (2002) Electrochemical studies of solid compounds and materials. In: Scholz F (ed) Electroanalytical methods chap. II Springer, Berlin Heidelberg New York, pp 201–222

  17. Komorsky-Lovric S (1997) J Solid State Electrochem 1:94

    Article  CAS  Google Scholar 

  18. Scholz F, Lovric M, Stojek Z (1997) J Solid State Electrochem 1:134

    Article  CAS  Google Scholar 

  19. Lovric M, Hermes M, Scholz F (1998) J Solid State Electrochem 2:401

    Article  CAS  Google Scholar 

  20. Komorsky-Lovric S, Mirceski V, Scholz F (1999) Microchim Acta 132:67

    CAS  Google Scholar 

  21. Zhuang QK, Scholz F, Pragst F (1999) Electrochem Commun 1:406

    Article  CAS  Google Scholar 

  22. Lovric M, Scholz F (1999) J Solid State Electrochem 3:172

    Article  CAS  Google Scholar 

  23. Lovric M, Hermes M, Scholz F (2000) J Solid State Electrochem 4:394

    Article  CAS  Google Scholar 

  24. Komorsky-Lovric S, Lovric M, Scholz F (2001) J Electroanal Chem 508:129

    Article  CAS  Google Scholar 

  25. Schröder U, Oldham KB, Myland JC, Mahon PJ, Scholz F (2000) J Solid State Electrochem 4:314

    Article  Google Scholar 

  26. Bond AM, Marken F (1994) J Electroanal Chem 372:125

    Article  CAS  Google Scholar 

  27. Shaw SJ, Marken F, Bond AM (1996) J Electroanal Chem 404:227

    Article  CAS  Google Scholar 

  28. Bond AM, Fletcher S, Marken F, Shaw SJ, Symons PG (1996) J Chem Soc Faraday Trans 92:3925

    Article  CAS  Google Scholar 

  29. Bond AM, Marken F, Hill E, Compton RG, Hugel H (1997) J Chem Soc Perkin Trans 2:1735

    Google Scholar 

  30. Wooster TJ, Bond AM, Honeychurch MJ (2001) Electrochem Commun 3:746

    Article  CAS  Google Scholar 

  31. Keyes TE, Foster RJ, Bond AM, Miao W (2001) J Am Chem Soc 123:2877

    Article  CAS  PubMed  Google Scholar 

  32. Evans CD, Chambers JQ (1994) Chem Mater 6:454

    Google Scholar 

  33. Kulesza PJ, Jedral T, Galus Z (1989) Electrochim Acta 34:851

    Article  CAS  Google Scholar 

  34. Zadronecki M, Wrona PK, Galus Z (1999) J Electrochem Soc 146:620

    Article  CAS  Google Scholar 

  35. Zadronecki M, Linek IA, Stroka J, Wrona PK, Galus Z (2001) J Electrochem Soc 148:E348

    Article  CAS  Google Scholar 

  36. Mounts RD, Widlund K, Gunadi H, Perez J, Pech B, Chambers JQ (1992) J Electroanal Chem 340:227

    Article  CAS  Google Scholar 

  37. Scaboo KM, Grover WH, Chambers JQ (1999) Anal Chim Acta 380:47

    Article  CAS  Google Scholar 

  38. Suárez MF, Bond AM, Compton RG (1999) J Solid State Electrochem 4:24

    Article  Google Scholar 

  39. Marken F, Compton RG, Goeting CH, Foord JS, Bull SD, Davies SG (1998) Electroanalysis 10:821

    Article  CAS  Google Scholar 

  40. Schröder U, Compton RG, Marken F, Bull SD, Davies SG, Gilmour S (2001) J Phys Chem B 105:1344

    Article  Google Scholar 

  41. Wadhawan JD, Evans RG, Compton RG (2002) J Electroanal Chem 533:71

    Article  CAS  Google Scholar 

  42. Banks CE, Davies TJ, Evans RG, Hignett G, Wain AJ, Lawrence NS, Wadhawan JD, Marken F, Compton RG (2003) Phys Chem Chem Phys 5:4053

    Article  CAS  Google Scholar 

  43. Gergely A, Inzelt G (2001) Electrochem Commun 3:753

    Article  CAS  Google Scholar 

  44. Fehér K, Inzelt G (2002) Electrochim Acta 47:3551

    Article  Google Scholar 

  45. Inzelt G (2002) J Solid State Electrochem 6:265

    Article  CAS  Google Scholar 

  46. Inzelt G (2003) J Solid State Electrochem 7:503

    Article  CAS  Google Scholar 

  47. Sauerbrey G (1959) Z Phys 155:206

    CAS  Google Scholar 

  48. Inzelt G (1994) Mechanism of charge transport in polymer-modified electrodes. In: Bard AJ (ed) Electroanalytical chemistry, vol. 18. Dekker, New York, pp 89–241

  49. Kim YG, Soriaga MP (2001) J Colloid Interface Sci 236:197

    Article  CAS  PubMed  Google Scholar 

  50. Hepel M, Janusz W (2000) Electrochim Acta 45:3785

    Article  CAS  Google Scholar 

  51. Erdey-Grúz T (1974) Transport phenomena in aqueous solutions. Hilger, London

  52. Miras MC, Barbero C, Kötz R, Haas O, Schmidt VM (1992) J Electroanal Chem 338:279

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the National Scientific Research Fund (OTKA T031762) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Inzelt.

Additional information

Dedicated to Prof. Zbigniew Galus on the occasion of his 70th birthday in recognition of his outstanding contributions to electrochemistry

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puskás, Z., Inzelt, G. Electrochemical microgravimetric study on microcrystalline particles of phenazine attached to gold electrodes. J Solid State Electrochem 8, 828–841 (2004). https://doi.org/10.1007/s10008-004-0551-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-004-0551-8

Keywords

Navigation