Skip to main content
Log in

Synthesis and electrical properties of dense Bi2Al4O9

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Bi2Al4O9 ceramics are difficult to sinter to greater than 80% theoretical density due to peritectic decomposition at 1,070 °C. A novel processing method is discussed where a high-bismuth oxide-based liquid is used as a sintering aid. After sintering, the high bismuth oxide phase is removed by leaching with 40% acetic acid. The resulting samples are phase pure and ∼91% dense. The grain size varies in a wide range with the average grain size of ∼1 μm. The electrical properties of these ceramics were measured as functions of temperature (550–850 °C) and oxygen partial pressure (6×10−6–1 atm). The total conductivity was separated into electronic and ionic contributions. The low ionic conductivity indicates that the material is not an ‘intrinsically defective fast ion conductor’. The ionic conductivity is due almost exclusively to compensating oxygen vacancies related to impurities. With increasing temperature and decreasing oxygen partial pressure, the electronic conduction dominates over the ionic conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Pernot E, Anne M, Bacmann M, Strobel P, Fouletier J, Vanier RN, Mairesse G, Abraham F, Nowogrocki G (1994) Solid State Ionics 70(71):259

    Article  Google Scholar 

  2. Goodenough JB, Manthiram A, Parantharam M, Zhen YS (1992) In: Balkanski M, Takahashi T, Tuller HL (eds) Solid state ionics. Elsevier, Amsterdam, p 17

  3. Vanier RN, Mairesse G, Abraham F, Nowogrocki G (1994) Solid State Ionics 70(71):248

    Article  Google Scholar 

  4. Ferloni P, Magistris A (1994) J Phys IV 4:C1

    Article  Google Scholar 

  5. Speranskaya EI, Skorokov VM, Safronov GM, Gaidukov EN (1970) Inorg Mater (USSR) 6(7):1201

    Google Scholar 

  6. Bloom I, Hash MC, Zebrowski JP, Myles KM, Krumpelt M (1992) Solid State Ionics 53–56:1055

    Google Scholar 

  7. Chick LA, Pederson LR, Maupin GD, Bates JL, Thomas LE, Exharhos GJ (1990) Mater Lett 10(1–2):6

    CAS  Google Scholar 

  8. Bates JL, Chick LA, Weber WJ (1992) Solid State Ionics 52:235

    Article  CAS  Google Scholar 

  9. Zhu W, Wang CC, Akbar SA, Asiaie R, Dutta PK, Alim MA (1996) Jpn J Appl Phys 35:6145

    Article  CAS  Google Scholar 

  10. Kleitz M, Dessemond L, Steil MC (1995) Solid State Ionics 75:107

    Article  CAS  Google Scholar 

  11. Dessemond L (1992) Spectroscopie d’impédance des fissures dans la zircone cubique. PhD Thesis, Institut National Polytechnique de Grenoble

  12. Kofstad P (1972) Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides. Wiley, New York

    Google Scholar 

  13. Takahashi T, Esaka T, Iwahara H (1977) J Appl Electrochem 7:299

    Article  CAS  Google Scholar 

  14. Steele BCH (1992) In: Balkanski M, Takahashi T, Tuller HL (eds) Solid state ionics. Elsevier, Amsterdam, p 17

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy, Morgantown Energy Technology Center, under contract number W-31-109-ENG-38. The authors wish to thank Jong-Hee Park and Ben S. Tani for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Larose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larose, S., Akbar, S.A. Synthesis and electrical properties of dense Bi2Al4O9 . J Solid State Electrochem 10, 488–498 (2006). https://doi.org/10.1007/s10008-005-0002-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0002-1

Keywords

Navigation