Skip to main content

Advertisement

Log in

Carbon paste electrodes: correlation between the electrochemical hydrogen storage capacity and the physicochemical properties of carbon blacks

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The difficulties in the use of carbon paste electrodes to quantify the electrochemical adsorption of hydrogen in nanocarbon materials are described. Chronoamperometry studies using a Ferro/Ferri redox couple were performed to obtain the electrochemical active area of paste electrodes prepared by dispersion of differing samples of carbon blacks (CB) within silicon oil. This electrochemical active area was combined with the BET-surface area of the carbon blacks, to obtain the mass of superficial carbon involved in the electrochemical processes. To assure equal conditions for comparison, the electronic conductivity of the paste was equivalent in all the samples. From our results it appears that cyclic voltammetry, combined with carbon paste electrodes and nitrogen adsorption isotherms, provides a simple and less expensive route for the qualitative evaluation of the electrochemical hydrogen uptake of novel carbon materials. Still, for quantitative measurements, some issues remain unsolved in highly structured carbons, where the lack of penetration of the bulky Ferro/Ferri redox couple in the micropores of the CB and the occurrence of solid-state diffusion cause the underestimation of the mass involved in hydrogen adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kinoshita K (2003) Carbon, electrochemical and physicochemical properties. Wiley, New York

    Google Scholar 

  2. Ye Y, Ahn CC, Witham C, Fultz B, Liu J, Rinzler AG, Colbert D, Smith KA, Smalley RE (1999) Appl Phys Lett 74:2307

    Google Scholar 

  3. Dillon AC, Bekkedahl TA, Jones KM, Heben MJ (1999) Fullerenes 3:716

    Google Scholar 

  4. Wu HB, Chen P, Lin J, Tan KL (2000) Int J Hydrogen Energy 25:261

    Google Scholar 

  5. Yang RT (2000) Carbon 38:623

    Google Scholar 

  6. Yin YF, Mays T, McEnaney B (2000) Langmuir 103:10521

    Google Scholar 

  7. Barisci JN, Wallace GG, Baughman RH (2000) J Electroanal Chem 488:92

    Google Scholar 

  8. Rajalakshmi N, Dhathathreyan KS, Govindaraj A, Satishkumar BC (2000) Electrochim Acta 45:4511

    Google Scholar 

  9. Lee SM, Park KS, Choi YC, Park YS, Bok JM, Bae DJ, Nahm KS, Choi YG, Yu SC, Kim N, Frauenheim T, Lee YH (2000) Synthetic Metals 113:209

    Google Scholar 

  10. Qin X, Gao XP, Liu H, Yuan HT, Yan DY, Gong WL, Song DY (2000) Electrochem Solid State Lett 3:532

    Google Scholar 

  11. Jurewicz K, Frackowiak E, Béguin F (2001) Electrochem Solid State Lett 4:A27

    Google Scholar 

  12. Gao XP, Lan Y, Pan GL, Wu F, Qu JQ, Song DY, Shen PW (2001) Electrochem Solid State Lett 4:A173

    Google Scholar 

  13. Frackowiak E, Béguin F (2002) Carbon 40:1775

    Google Scholar 

  14. Züttel A, Sudan P, Mauron P, Kiyobayashi T, Emmenegger C, Schlapbach L (2002) Int J Hydrogen Energy 27:203

    Google Scholar 

  15. Youn HS, Ryu H, Cho TH, Choi WK (2002) Int J Hydrogen Energy 27:937

    Google Scholar 

  16. Darkrim FL, Malbrunot P, Tartaglia GP (2002) Int J Hydrogen Energy 27:193

    Google Scholar 

  17. Yan X, Gao X, Li Y, Liu Z, Wu F, Shen Y, Son D (2003) Chem Phys Lett 372:336

    Google Scholar 

  18. Miranda-Hernández M, Ayala JA, Rincón ME (2003) J Solid State Electrochem 7:264

    Google Scholar 

  19. Miranda-Hernández M, Ayala JA, Rincón ME (2003) J Solid State Electrochem 7:264

    Google Scholar 

  20. Buchholz DB, Doherty SP, Chang RPH (2003) Carbon 41:1625

    Google Scholar 

  21. Fujiwara A, Ishii K, Suematsu H, Kataura H, Maniwa Y, Suzuki S, Achiba Y (2001) Chem Phys Lett 336:205

    Article  CAS  Google Scholar 

  22. Strømme M, Niklasson GA, Granqvist CG (1995) Phys Rev B 52:14192

    Google Scholar 

  23. Groszek AJ (1987) Carbon 25:717

    Google Scholar 

  24. Qu D (2002) J Power Sources 109:403

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to M.E. Trujillo-Camacho and R. Moran for technical assistance, to DGAPA-UNAM and CONACYT-MEXICO for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Rincón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miranda-Hernández, M., Rincón, M.E. Carbon paste electrodes: correlation between the electrochemical hydrogen storage capacity and the physicochemical properties of carbon blacks. J Solid State Electrochem 9, 646–652 (2005). https://doi.org/10.1007/s10008-004-0639-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-004-0639-1

Keywords

Navigation