Skip to main content
Log in

Electrocatalytic oxidation of formic acid on platinum particles dispersed in SWNT/PANI composite film

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Single-walled carbon nanotube (SWNT)/Polyaniline (PANI) composite film with good dispersion was prepared by electropolymerization of aniline containing well-dissolved SWNTs. Platinum (Pt) particles were electrodeposited on the SWNT/PANI composite film subsequently. The presence of SWNTs and platinum in the composite film was confirmed by XRD analysis. Four-point probe investigation exhibits that the electrical conductivity of SWNT/PANI composite film is significantly higher than that of pure PANI film. Cyclic voltammogram and Chronoamperogram show that Pt-modified SWNT/PANI electrode performs higher electrocatalytic activity than Pt-modified pure PANI electrode toward formic acid oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Weber M, Wang JT, Wasmus S, Savinell RF (1996) J Electrochem Soc 143:1158

    Google Scholar 

  2. Rice C, Ha S, Masel RI, Waszczuk P, Wieckowski A, Barnard T (2003) J Power Sources 115:229

    Google Scholar 

  3. Markovic NM, Ross PN Jr (2002) Surf Sci Rep 45:117

    Google Scholar 

  4. Thackeray JW, Wrighton MS (1986) J Phys Chem 90:6674

    Google Scholar 

  5. Gholamian M, Contractor AQ (1990) J Electroanal Chem 289:69

    Google Scholar 

  6. Gholamian M, Sundaram J, Contractor AQ (1987) Langmuir 3:741

    Google Scholar 

  7. Parsons R, Vandnoot T (1988) J Electroanal Chem 257:9

    Article  CAS  Google Scholar 

  8. Malinauskas A (1999) Synthetic Met 107:75

    Google Scholar 

  9. Kazarinov VE, Andreev VN, Spitsyn MA, Mayorov AP(1990) Electrochim Acta 35:1459

    Google Scholar 

  10. Napporn WT, Laborde H, Léger J-M, Lamy C (1996) J Electroanal Chem 404:153

    Google Scholar 

  11. Iijima S, Ichihashi T (1993) Nature 363:603

    Article  Google Scholar 

  12. Wong EW, Sheehan PE, Lieber CM (1997) Science 277:1971

    Article  Google Scholar 

  13. Dresselhaus MS, Dresselhaus G, Avouris Ph (2001) Top Appl Phys 80:1

    Google Scholar 

  14. Schadler LS, Giannaris SC, Ajayan PM (1998) Appl Phys Lett 73:3842

    Google Scholar 

  15. Wagner HD, Lourie O, Feldman Y, Tenne R (1998) Appl Phys Lett 72:188

    Google Scholar 

  16. Qian D, Dickey EC, Andrews R, Rantell T (2000) Appl Phys Lett 76:2868

    Google Scholar 

  17. Skotheim TA, Elsenbaumer RL, Reynolds JR (1997) Handbook of conducting polymers. Marcel Dekker, New York

    Google Scholar 

  18. Premamoy G, Samir KS, Amit C (1999) Eur Polym J 35:699

    Google Scholar 

  19. Hassanien A, Gao M, Tokumoto M, Dai L (2001) Chem Phys Lett 342:479

    Google Scholar 

  20. Deng J, Ding X, Zhang W, Peng Y, Wang J, Long X, Li P (2002) Eur Polym J 38:2497

    Google Scholar 

  21. Maser WK, Benito AM, Callejas MA, Seeger T, Martinez MT, Schreiber J, Muszynski J, Chauvet O, Osváth Z, Koós AA, Biró LP (2003) Mater Sci Eng C 23:87

    Google Scholar 

  22. Zengin H, Zhou WS, Jin JY et al (2002) Adv Mater 14:1480

    Google Scholar 

  23. Hadjiev VG, Iliev MN, Arepalli S, Nikolaev P, Files BS (2001) Appl Phys Lett 78:3193

    Google Scholar 

  24. Peigney A, Flahaut E, Laurent C, Chastel F, Rousset A (2002) Chem Phys Lett 352:20

    Google Scholar 

  25. Bower C, Rosen R, Zhou O (1999) Appl Phys Lett 74:3317

    Google Scholar 

  26. Haggenmueller R, Gommans HH, Rinzler AG, Fischer J E, Winey KI (2000) Chem Phys Lett 30:219

    Google Scholar 

  27. Sun Y, Wilson SR, Schuster DI (2001) J Am Chem Soc 123:5348

    Google Scholar 

  28. Li QW, Yan H, Cheng Y, Zhang J, Liu ZF (2002) J Mater Chem 12:1179

    Google Scholar 

  29. Li XH, Zhang J, Li QW, Li HL, Liu ZF (2003) Carbon 41:598

    Google Scholar 

  30. Zhou YK, He BL, Zhou WJ, Li HL (2004) J Electrochem Soc 151A:1052

    Google Scholar 

  31. Guo DJ, Li HL (2004) J Solid State Electrochem (in press)

  32. Stilwell DE, Park SM (1988) J Electrochem Soc 135:2491

    CAS  Google Scholar 

  33. Niu L, Qiuhong L, Fenghua W, Xiao C, Hao W (2003) Synthetic Met 139:271

    Google Scholar 

  34. Laborde H, Léger J-M, Lamy C (1994) J Appl Electrochem 24:219

    CAS  Google Scholar 

  35. Join Committee on Power Diffraction Standards (1991) Diffraction data file: JCPDS International Center for Diffraction Data. Swarthmore PA

    Google Scholar 

  36. Terrones M, Hsu WK, Schilder A, Terrons H, Grobert N, Hare JP (1998) Appl Phys A 66:307

    Google Scholar 

  37. Feng W, Bai XD, Lian YQ, Liang J, Wang XG, Yoshino K (2003) Carbon 41: 1551

    Google Scholar 

  38. Capon A, Parsons R (1973) J Electroanal Chem 45:205

    Google Scholar 

  39. Wieckowski A, Sobkowski J (1975) J Electroanal Chem 63:365

    Google Scholar 

Download references

Acknowledgements

We are grateful for the financial supports from National Natural Science Foundation of China (NSFC 6989022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu-lin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, J., Guo, Dj., Wang, Z. et al. Electrocatalytic oxidation of formic acid on platinum particles dispersed in SWNT/PANI composite film. J Solid State Electrochem 9, 634–638 (2005). https://doi.org/10.1007/s10008-004-0624-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-004-0624-8

Keywords

Navigation