Skip to main content
Log in

Kinetic calculations of the Ni anodic dissolution from EIS

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Anodic nickel dissolution in acid media has been analyzed by means of electrochemical quartz crystal microbalance and electrochemical impedance spectroscopy techniques. The experimental impedance spectra have been fitted to an equivalent circuit which is related to a mechanism of two consecutive electron transfers followed by a Ni2+ mass transfer step. That way, an estimation for values of rate constants and surface concentrations of the Ni(0), Ni(I) and Ni(II) species has been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arvía AJ, Posadas D (1975) In: Bard AJ (ed) Encyclopedia of electrochemistry of the elements, vol 3. Marcel Dekker, New York, p 211

  2. Sato N, Okamoto G (1981) In: Bockris JO, Conway BE, Yeager E, White RE (eds), Electrochemical materials science, vol. 4. Plenum, New York, p 193

  3. Real SG, Vilche JR, Arvía AJ (1980) Corros Sci 20:563

    Article  CAS  Google Scholar 

  4. Barbosa MR, Real SG, Vilche JR, Arvía AJ (1988) J Electrochem Soc 135:1077

    CAS  Google Scholar 

  5. MacDougall B (1979) J Electrochem Soc 126:919

    CAS  Google Scholar 

  6. Abd El Rehim SS, Abd El Wahaab SM, Abd El Meguid EA (1986) Surf Coat Technol 29:325

    Article  Google Scholar 

  7. Jouanneau A, Keddam M, Petit MC (1976) Electrochim Acta 21:287

    Article  CAS  Google Scholar 

  8. Barbosa MR, Bastos JA, Gacía-Jareño JJ, Vicente F (1998) Electrochim Acta 44:957

    Article  CAS  Google Scholar 

  9. Keddam M, Takenouti H, Yu N (1985) J Electrochem Soc 132:2561

    CAS  Google Scholar 

  10. Keddam M (1995) In: Marcus P, Oudar J (eds), Corrosion mechanism in theory and practice. Marcel Dekker, New York, pp 55–122

  11. Itagaki M, Nakazawa H, Watanabe K, Noda K (1997) Corros Sci 39:901

    Article  CAS  Google Scholar 

  12. Giménez-Romero D, García-Jareño JJ, Vicente F (2003) J Electroanal Chem 558:25

    Article  Google Scholar 

  13. Giménez-Romero D, García-Jareño JJ, Vicente F (2002) Electrochem Commun 4:613

    Article  Google Scholar 

  14. Shao HB, Wang JM, Zhang Z, Zhang JQ, Cao CN (2003) J Electroanal Chem 549:145

    Article  CAS  Google Scholar 

  15. Bard AJ, Faulkner LR (2001) Electrochemical methods. fundamentals and applications, 2nd edn. Wiley, New York, pp 316–370

  16. Macdonald DD (1990) Electrochim Acta 35:1509

    Article  CAS  Google Scholar 

  17. Macdonald DD (1977) Transient techniques in electrochemistry. Plenum, New York, pp 229–311

  18. Epelboin I, Gabrielli C, Keddam M (1975) Corros Sci 15:155

    CAS  Google Scholar 

  19. Vanmaekelbergh D, Erné BH (1999) J Electrochem Soc 146:2488

    Article  CAS  Google Scholar 

  20. Berthier F, Diard JP, Michel R (2001) J Electroanal Chem 510:1

    Article  CAS  Google Scholar 

  21. Gabrielli C (1983) Identification of electrochemical processes by frequency response analysis. Solartron Instrumentation Group, Farnborough

  22. Keddam M, Mattos OR, Takenouti H (1981) J Electrochem Soc 128:257

    CAS  Google Scholar 

  23. Keddam M, Mattos OR, Takenouti H (1981) J Electrochem Soc 128:266

    CAS  Google Scholar 

  24. Sanchez S, Picard GS (1996) Electrochim Acta 41:2035

    Article  CAS  Google Scholar 

  25. Péter L, Arai J, Akahoshi H (2000) J Electroanal Chem 582:125

    Article  Google Scholar 

  26. Armstrong RD, Firman RE, Thirsk HR (1973) Faraday Discuss 56:44

    Google Scholar 

  27. Macdonald JR (1992) Solid State Ionics 58:97

    Article  CAS  Google Scholar 

  28. Vicente F, García-Jareño JJ, Sanmatías A (2000) Procesos Electródicos del NAFIÓN y del Azul de Prusia sobre electrodo transparente de óxido de indio-estaño: un modelo de electrodo multicapa. Moliner-40, Burjassot

  29. Lachenwitzer A, Magnussen OM (2000) J Phys Chem B 104:7424

    Article  CAS  Google Scholar 

  30. Giménez D, García-Jareño JJ, Vicente F Materiales y Procesos Electródicos I (2002). INSDE, València, pp 65–84

  31. Sauerbrey G (1959) Z. Physik 155:206

    CAS  Google Scholar 

  32. Song KD, Kim KB, Han SH, Lee HK (2003) Electrochem Commun 5:460

    Article  CAS  Google Scholar 

  33. Lachenwitzer A, Morin S, Magnussen OM, Behm RJ (2001) Phys Chem Chem Phys 3:3351

    Article  CAS  Google Scholar 

  34. Wiart R (1990) Electrochim Acta 35:1587

    Article  CAS  Google Scholar 

  35. Gabrielli C, Keddam M (1996) Electrochim Acta 41:957

    Article  CAS  Google Scholar 

  36. Jouanneau A, Petit MC (1976) J Chim Phys 73:82

    CAS  Google Scholar 

  37. Giménez-Romero D, García-Jareño JJ, Vicente F (2003) J Electroanal Chem (in press)

  38. Real SG, Barbosa MR, Vilche JR, Arvía AJ (1990) J Electrochem Soc 137:1696

    CAS  Google Scholar 

  39. Gregori J, Agrisuelas J, Gimenez D, Peña MP, Garcia-Jareno JJ, Vicente F (2003) Rev Metal 39:346

    CAS  Google Scholar 

  40. Diard J-P, Le Gorrec B, Montella C (1996) Cinétique Électrochimique. Collection Méthodes, Hermann, Paris

  41. Diard J-P, Le Gorrec B, Montella C, Montero-Ocampo C (1993) J Electroanal Chem 352:1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by CICyT-Mat/2000-0-P4. D. Giménez-Romero acknowledges a Fellowship from the Generalitat Valenciana (FPI program). J. Gregori acknowledges a Fellowship from the Spanish Education Ministery (FPU program). J.J. García-Jareño acknowledges the financial support of the program “Ramón y Cajal” from the Spanish Science and Technology Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Vicente.

Appendices

Appendix 1

A mathematical method, similar to that used by Diard et al. [40, 41] for the Volmer–Heyrovsky reduction mechanism, was used for obtaining the theoretical impedance function of the anodic dissolution of the metal. It can be considered that a metal dissolves by means of two consecutive electron transfers followed by a transport step, according to the reaction scheme:

$$ {\text{Me}}{\left( {\text{0}} \right)}\xrightarrow{{r_{1} }}{\text{Me}}{\left( {\text{I}} \right)} + {\text{e}}^{ - } $$
(A1)
$$ {\text{Me}}{\left( {\text{I}} \right)}\xrightarrow{{r_{2} }}{\text{Me}}{\left( {{\text{II}}} \right)} + {\text{e}}^{ - } $$
(A2)
$$ {\text{Me}}{\left( {{\text{II}}} \right)}\xrightarrow{{r_{3} }}{\text{Me}}^{{{\text{2 + }}}} $$
(A3)

where r1, r2 and r3 are the reaction rates for each elementary step. Me(I) and Me(II) are the reaction intermediates.

The charge balance at the electrode surface defines the faradaic current:

$$ \frac{{i_{F} }} {{AF}} = r_{1} + r_{2} $$
(A4)

where A and F are the electrode surface and the Faraday constant, respectively. The mass balance at the electrode surface, for each reaction intermediate, is described by the equations:

$$ \frac{{\operatorname{d} \theta _{1} }} {{\operatorname{d} t}} = r_{1} - r_{2} $$
(A5)
$$ \frac{{\operatorname{d} \theta _{2} }} {{\operatorname{d} t}} = r_{2} - r_{3} $$
(A6)
$$ \theta _{0} + \theta _{1} + \theta _{2} = \theta ^{0} $$
(A7)

where θ0, θ1 and θ2 are the surface concentrations of Me(0), Me(I) and Me(II) species at the electrode surface and θ0 is the initial concentration of free sites at the electrode surface. r1, r2, r3, θ0, θ1 and θ2 will be a function of potential E and θ i . If each elementary step obeys kinetics of first order, it can be expressed as:

$$ r_{1} = k_{1} \theta _{0} $$
(A8)
$$ r_{2} = k_{2} \theta _{1} $$
(A9)
$$ r_{3} = k_{3} \theta _{2} $$
(A10)

If a small sinusoidal perturbation of potential is applied around a defined steady state at a potential E0, we can write the Taylor expansion for Eqs. (A4), (A5), (A6) and (A7) around this steady state in the Laplace plane. If the amplitude of the potential perturbation is small, only the terms of first order need be considered:

$$ \frac{{\Delta i_{F} }} {{AF}} = {\left( {\frac{{\partial r_{1} }} {{\partial E}} + \frac{{\partial r_{2} }} {{\partial E}}} \right)}\Delta E - \frac{{\partial r_{1} }} {{\partial \theta _{0} }}\Delta \theta _{2} + {\left( {\frac{{\partial r_{2} }} {{\partial \theta _{1} }} - \frac{{\partial r_{1} }} {{\partial \theta _{0} }}} \right)}\Delta \theta _{1} $$
(A11)
$$ {\left( {\frac{{\partial r_{1} }} {{\partial \theta _{0} }} + \frac{{\partial r_{2} }} {{\partial \theta _{1} }} + p} \right)}\Delta \theta _{1} = {\left( {\frac{{\partial r_{1} }} {{\partial E}} - \frac{{\partial r_{2} }} {{\partial E}}} \right)}\Delta E - \frac{{\partial r_{1} }} {{\partial \theta _{0} }}\Delta \theta _{2} $$
(A12)
$$ {\left( {\frac{{\partial r_{3} }} {{\partial \theta _{2} }} + p} \right)}\Delta \theta _{1} = \frac{{\partial r_{2} }} {{\partial E}}\Delta E + \frac{{\partial r_{2} }} {{\partial \theta _{1} }}\Delta \theta _{1} $$
(A13)

where p=jω is the Laplace variable. Dividing each term of Eqs. (A11), (A12) and (A13) by Δi F an equation system for \( Z_{F} = \Delta E/\Delta i_{F} \), \( \Delta \theta _{1} /\Delta i_{F} \) and \( \Delta \theta _{2} /\Delta i_{F} \) is defined, where Z F is the faradaic impedance which can be determined by means of the Kramer’s rule:

$$ FAZ_{F} = \frac{{{\left| {\begin{array}{*{20}c} {1} & {{\frac{{\partial r_{2} }} {{\partial \theta _{1} }} - \frac{{\partial r_{1} }} {{\partial \theta _{0} }}}} & {{ - \frac{{\partial r_{1} }} {{\partial \theta _{0} }}}} \\ {0} & {{ - {\left( {\frac{{\partial r_{1} }} {{\partial \theta _{0} }} + \frac{{\partial r_{2} }} {{\partial \theta _{1} }} + p} \right)}}} & {{ - \frac{{\partial r_{1} }} {{\partial \theta _{0} }}}} \\ {0} & {{\frac{{\partial r_{2} }} {{\partial \theta _{1} }}}} & {{ - {\left( {\frac{{\partial r_{3} }} {{\partial \theta _{2} }} + p} \right)}}} \\ \end{array} } \right|}}} {{{\left| {\begin{array}{*{20}c} {{\frac{{\partial r_{1} }} {{\partial E}} + \frac{{\partial r_{2} }} {{\partial E}}}} & {{\frac{{\partial r_{2} }} {{\partial \theta _{1} }} - \frac{{\partial r_{1} }} {{\partial \theta _{0} }}}} & {{ - \frac{{\partial r_{1} }} {{\partial \theta _{0} }}}} \\ {{\frac{{\partial r_{1} }} {{\partial E}} - \frac{{\partial r_{2} }} {{\partial E}}}} & {{ - {\left( {\frac{{\partial r_{1} }} {{\partial \theta _{0} }} + \frac{{\partial r_{2} }} {{\partial \theta _{1} }} + p} \right)}}} & {{ - \frac{{\partial r_{1} }} {{\partial \theta _{0} }}}} \\ {{\frac{{\partial r_{2} }} {{\partial E}}}} & {{\frac{{\partial r_{2} }} {{\partial \theta _{1} }}}} & {{ - {\left( {\frac{{\partial r_{3} }} {{\partial \theta _{2} }} + p} \right)}}} \\ \end{array} } \right|}}} $$
(A14)

Appendix 2

When chloride ion is present in the acid medium the experimental impedance spectra are fitted to the equivalent circuit of Fig. 4. The faradaic impedance function for this equivalent circuit is:

$$ Z_{F} = \frac{{R_{2} {\left( {R + R_{1} } \right)} + {\left( {{\left( {L_{2} {\left( {R + R_{1} + R_{2} } \right)} + RR_{1} R_{2} C_{1} } \right)}j\omega - {\left( {R_{1} C_{1} L_{2} (R + R_{2} } \right)}} \right)}\omega ^{2} }} {{R_{2} + {\left( {R_{1} C_{1} R_{2} + L_{2} } \right)}j\omega - {\left( {R_{1} C_{1} L_{2} } \right)}}} $$
(A15)

If Eq. (A15) is compared with Eq. (11), the following equation system can be written:

$$ \frac{{\frac{{\partial r_{1} }} {{\partial \theta _{0} }}\frac{{\partial r_{2} }} {{\partial \theta _{1} }} + {\left( {\frac{{\partial r_{1} }} {{\partial \theta _{0} }} + \frac{{\partial r_{2} }} {{\partial \theta _{1} }}} \right)}\frac{{\partial r_{3} }} {{\partial \theta _{2} }}}} {{2\frac{{\partial r_{2} }} {{\partial E}}\frac{{\partial r_{1} }} {{\partial \theta _{0} }}\frac{{\partial r_{3} }} {{\partial \theta _{2} }} + 2\frac{{\partial r_{1} }} {{\partial E}}\frac{{\partial r_{2} }} {{\partial \theta _{1} }}\frac{{\partial r_{3} }} {{\partial \theta _{2} }}}} = F{\left( {R + R_{1} } \right)} $$
(A16)
$$ \frac{{\frac{{\partial r_{1} }} {{\partial \theta _{0} }} + \frac{{\partial r_{2} }} {{\partial \theta _{1} }} + \frac{{\partial r_{3} }} {{\partial \theta 2}}}} {{2\frac{{\partial r_{2} }} {{\partial E}}\frac{{\partial r_{1} }} {{\partial \theta _{0} }}\frac{{\partial r_{3} }} {{\partial \theta _{2} }} + 2\frac{{\partial r_{1} }} {{\partial E}}\frac{{\partial r_{2} }} {{\partial \theta _{1} }}\frac{{\partial r_{3} }} {{\partial \theta _{2} }}}} = F\frac{{{\left( {L_{2} {\left( {R + R_{1} + R_{2} } \right)} + RR_{1} R_{2} C_{1} } \right)}}} {{R_{2} }} $$
(A17)
$$ \frac{{\frac{{\partial r_{1} }} {{\partial \theta _{0} }}\frac{{\partial r_{2} }} {{\partial E}} + 2\frac{{\partial r_{1} }} {{\partial E}}\frac{{\partial r_{2} }} {{\partial \theta _{1} }} + \frac{{\partial r_{1} }} {{\partial E}}\frac{{\partial r_{3} }} {{\partial \theta _{2} }} + \frac{{\partial r_{2} }} {{\partial E}}\frac{{\partial r_{3} }} {{\partial \theta _{2} }}}} {{2\frac{{\partial r_{2} }} {{\partial E}}\frac{{\partial r_{1} }} {{\partial \theta _{0} }}\frac{{\partial r_{3} }} {{\partial \theta _{2} }} + 2\frac{{\partial r_{1} }} {{\partial E}}\frac{{\partial r_{2} }} {{\partial \theta _{1} }}\frac{{\partial r_{3} }} {{\partial \theta _{2} }}}} = \frac{{R_{2} R_{1} C_{1} + L_{2} }} {{R_{2} }} $$
(A18)
$$ \frac{{\frac{{\partial r_{1} }} {{\partial E}} + \frac{{\partial r_{2} }} {{\partial E}}}} {{2\frac{{\partial r_{2} }} {{\partial E}}\frac{{\partial r_{1} }} {{\partial \theta _{0} }}\frac{{\partial r_{3} }} {{\partial \theta _{2} }} + 2\frac{{\partial r_{1} }} {{\partial E}}\frac{{\partial r_{2} }} {{\partial \theta _{1} }}\frac{{\partial r_{3} }} {{\partial \theta _{2} }}}} = \frac{{R_{1} C_{1} L_{2} }} {{R_{2} }} $$
(A19)
$$ \frac{1} {{2\frac{{\partial r_{2} }} {{\partial E}}\frac{{\partial r_{1} }} {{\partial \theta _{0} }}\frac{{\partial r_{3} }} {{\partial \theta _{2} }} + 2\frac{{\partial r_{1} }} {{\partial E}}\frac{{\partial r_{2} }} {{\partial \theta _{1} }}\frac{{\partial r_{3} }} {{\partial \theta _{2} }}}} = F\frac{{R_{1} L_{2} C_{1} {\left( {R + R_{2} } \right)}}} {{R_{2} }} $$
(A20)

which can be simplified as in the previous case (two capacitive loops). If R and C1 are very low and if it is considered that k1k2,k3, the following equation system is obtained:

$$ \frac{{k_{2} + k_{3} }} {{2k_{1} k_{3} b_{2} \theta _{0} }} = FR_{1} $$
(A21)
$$ \frac{1} {{2k_{1} k_{3} b_{2} \theta _{0} }} = F\frac{{{\left( {R_{1} + R_{2} } \right)}L_{2} }} {{R_{2} }} $$
(A22)
$$ \frac{1} {{2k_{3} }} = \frac{{L_{2} }} {{R_{2} }} $$
(A23)
$$ \frac{{b_{1} + b_{2} }} {{2k_{1} k_{3} b_{2} }} = \frac{{R_{1} C_{1} L_{2} }} {{R_{2} }} $$
(A24)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregori, J., García-Jareño, J.J., Giménez-Romero, D. et al. Kinetic calculations of the Ni anodic dissolution from EIS. J Solid State Electrochem 9, 83–90 (2005). https://doi.org/10.1007/s10008-004-0557-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-004-0557-2

Keywords

Navigation