Skip to main content
Log in

Transport in ceria electrolytes modified with sintering aids: effects on oxygen reduction kinetics

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Small (2 mol%) cobalt oxide additions to ceria-gadolinia (CGO) materials considerably improve sinterability, making it possible to obtain ceramics with 95–99% density and sub-micrometre grain sizes at 1,170–1,370 K. The addition of Co causes a significant shift of the electrolytic domain to lower pO2. This modification to the minor electronic conductivity of the electrolyte material has influence on the cathodic oxygen reduction reaction. The impedance technique is shown to provide information not only about polarisation resistance, but also about the active electrode area from analysis of the current constriction resistance. It is demonstrated that this current constriction resistance can be related to the minor electronic contributions to total conductivity in these materials. A simple imbedded grid approach gives control of the contact area allowing the properties of the electrolyte materials to be studied. A much lower polarisation resistance for the Co-containing CGO electrolyte is observed, which can be clearly attributed to an increased three-phase reaction area in the Co-containing material, as a consequence of elevated p-type conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a, b
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9a, b
Fig. 10a–d
Fig. 11

Similar content being viewed by others

References

  1. Steele BCH (2000) Solid State Ionics 129:95

    Article  CAS  Google Scholar 

  2. Huijsmans JPP (2001) Curr Opin Solid State Mater Sci 5:317

    Article  CAS  Google Scholar 

  3. Yamamoto O (2000) Electrochim Acta 45:2423

    CAS  Google Scholar 

  4. Christie GM, van Berkel FPF (1996) Solid State Ionics 83:17

    Article  CAS  Google Scholar 

  5. Hong SJ, Mehta K, Virkar AV (1998) J Electrochem Soc 145:638

    CAS  Google Scholar 

  6. Kleinlogel C, Gaukler LJ (1999) Nano sized ceria solid solutions for intermediate temperature solid oxide fuel cells. In: Singhal SC and Dokiya M (eds) 6th Int Symp of Solid Oxide Fuel Cells (SOFC VI) PV99–19. The Electrochemical Society, Pennington, N.J., p 225

  7. Kleinlogel C, Gauckler LJ (2000) Solid State Ionics 135:567

    Article  CAS  Google Scholar 

  8. Tianshu Z, Hing P, Huang H, Kilner J (2001) Mater Sci Eng B 83:235

    Article  Google Scholar 

  9. Fagg DP, Kharton VV, Frade JR (2002) J Electroceram 9:199

    Article  CAS  Google Scholar 

  10. Fagg DP, Abrantes JCC, Coll DP, Nùñez P, Kharton VV, Frade JR (2003) Electrochim Acta 48:1023

    Google Scholar 

  11. Kharton VV, Naumovich EN, Vecher AA (1999) J Solid State Electrochem 3:61

    Article  CAS  Google Scholar 

  12. Steele BCH, Hori KM, Uchino S (2000) Solid State Ionics 135:445

    Article  CAS  Google Scholar 

  13. Bohac P, Orliukas A, Gauckler LJ (1995) Lowering of the cathode overpotential of SOFC by electrolyte doping. In: Waser R (ed) Proc Int Conf “Electroceramics IV”, vol. 2. Augustinus Buchhandlung, Aachen, p.771

  14. Thampi KR, McEvoy AJ, Van herle J (1995) J Electrochem Soc 142:506

    Google Scholar 

  15. Kharton VV, Figueiredo FM, Navarro L, Naumovich EN, Kovalevsky AV, Yaremchenko AA, Viskup V, Carneiro A, Marques FMB, Frade JR (2001) J Mater Sci 36:1105

    Article  CAS  Google Scholar 

  16. Navarro LM, Marques FMB, Frade JR (1997) J Electrochem Soc 144:267

    CAS  Google Scholar 

  17. Mather GC, Fagg DP, A.Ringuedé A, Frade JR (2001) Fuel Cells 1:1

    Article  Google Scholar 

  18. Gorelov VP (1988) Elektrokhimiya 24:1380 (in Russian)

    CAS  Google Scholar 

  19. Sasaki K, Wurth J-P, Gschwend R, Gödickemeier M, Gauckler LJ (1996) J Electrochem Soc 143:530

    CAS  Google Scholar 

  20. Bieberle A, Meier LP, Gaukler LJ (2001) J Electrochem Soc 148(6):A646

    Article  CAS  Google Scholar 

  21. Gharbage B, Marques FMB, Frade JR (2000) Solid State Ionics 136/137:933

    Google Scholar 

  22. Lauret H, Hammou A (1996) J Eur Ceram Soc 16:447

    Article  CAS  Google Scholar 

  23. Fleig J, Pham P, Sztulzaft P, Maier J (1998) Solid State Ionics 113:739

    Article  Google Scholar 

  24. Fleig J, Maier J (1997) The influence of inhomogeneous potential distributions on the electrolyte resistance in solid oxide fuel cells. In: Stimming U, Singhal SC, Tagawa H, Lehnert W (eds) Proc 5th Int Symp on Solid Oxide Fuel Cells, PV 97–40. Aachen, Germany, p 1374

Download references

Acknowledgements

This work was supported by the FCT, Portugal (PRAXIS program and the contracts SFRH/BPD/3529/2000 and POCTI/CTM/39381/2001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan P. Fagg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fagg, D.P., Kharton, V.V. & Frade, J.R. Transport in ceria electrolytes modified with sintering aids: effects on oxygen reduction kinetics. J Solid State Electrochem 8, 618–625 (2004). https://doi.org/10.1007/s10008-004-0509-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-004-0509-x

Keywords

Navigation