Skip to main content
Log in

Untersuchung der Tumorsuppressoren p16INK4a und p14ARF in Mundschleimhautleukoplakien

Exploration of tumor suppressors p16INK4a and p14ARF in oral leukoplakias

  • Originalarbeit
  • Published:
Mund-, Kiefer- und Gesichtschirurgie Aims and scope Submit manuscript

Zusammenfassung

Die Inaktivierung von p16 und p14ARF wird als bedeutender Schritt der Tumorgenese des Oropharynxkarzinoms angesehen. Allelverluste in der Region dieser Gene werden in Mundschleimhautkarzinomen und deren Vorläuferläsionen angetroffen. Die vorliegende Studie sollte prüfen, in welchem Umfang Allelverluste bereits in Mundschleimhautleukoplakien auftreten und ob es anhand dieser Veränderungen möglich ist, Leukoplakien mit und ohne maligne Entartung zu unterscheiden. Darüber hinaus sollten geklärt werden, ob betroffene Leukoplakien Sequenzveränderungen der Gene p16 und p14ARF tragen, die eine Beeinträchtigung der Genfunktion bewirken können. Die Ergebnisse zeigten, dass „LOH“ (loss of heterozygosity) in Region der Gene p16 und p14ARF sowohl in Leukoplakien mit maligner Entartung als auch in klinisch entartungsfreien Leukoplakien auftreten, wobei sich die Allelverlusthäufigkeiten nicht signifikant unterscheiden. Insgesamt wurden in Leukoplakien seltener Allelverluste angetroffen als in den resultierenden Mundschleimhautkarzinomen (p < 0,05). Die Ergebnisse wiesen des Weiteren auf eine Häufung von LOH in dysplastischen Leukoplakien hin, ohne Signifikanzniveau zu erreichen. Langjähriges Tabakrauchen war mit signifikant gesteigerten Allelverlustraten assoziiert (p < 0,05). Die Gensequenzanalyse der Exonen 1α, 1β und 2 in Leukoplakien mit LOH ergab keine Veränderungen. Daraus schlussfolgern wir, dass Gen-Deletionen und Mutationen bei der Inaktivierung von p16 und p14ARF in Mundschleimhautleukoplakien eine untergeordnete Rolle spielen. Als frühes Ereignis der Karzinogenese treten sie in Leukoplakien mit und ohne maligne Entartung auf und sind als Einzelparameter daher ein unsicheres Bewertungskriterium des Entartungsrisikos. Sie sollten mit der Analyse anderer genetischer Faktoren, wie chromosomalen Methylierungsmustern und auch mit der histologischen Untersuchung kombiniert werden.

Abstract

The inactivation of p16 and p14ARF is considered to be an important step in the carcinogenesis of oropharygeal carcinomas. This consideration is supported by the observation of multiple allelic losses in the coding loci of chromosome 9p21 in squamous cell carcinomas and in dysplastic premalignant lesions. The present study hypothesized that comparable alterations already occur in leukoplakia, which are seen as potential predecessors of oral squamous cell carcinomas and that it is possible to differ leukoplakia with from leukoplakia without further malignant transformation. Furthermore we evaluated, whether such leukoplakia show sequence alterations in the genes p16 and p14ARF, which are capable to cause a limitation in gene function. The results show that the LOH pattern in genes p16 and p14ARF occur as well in leuplakia with malignant transformation as in leukoplakia, that do not show clinical alterations. The rate of allelic loss did not differ significantly. Overall, the incidence of allelic loss was lower in leuplakia compared to succeeding squamous-cell carcinomas (p < 0,05). The results further illustrated an increase in LOH patterns in dyplastic leukoplakia, without reaching statistical significance. Significant increases in allelic losses were found in heavy smokers, (p < 0,05). PCR analysis of the exons 1-alpha, exon 1-beta and exon 2 in leukoplakia, containing LOH patterns did not show genetic alterations. Thus we concluded, that gene deletion and gene mutation have a minor role in the inactivation process of p16 and p14ARF in oral leukoplakia. Representing an early process in carcinogenesis, gene deletion and mutation occur in leukoplakia with and without malignant transformation. Therefore, taken as a singular parameter they represent an uncertain criteria to assess the potential of malignant transformation. However they could provide information in combination with other genetic factors like chromosomal methylation patterns and histology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Califano J, van der Riet P, Westra W, Nawroz H, Clayman G, Piantadosi S, Corio R, Lee D, Greenberg B, Koch W, Sidransky D (1996) Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res 56(11):2488–92

    PubMed  CAS  Google Scholar 

  2. Cawkwell L, Lewis FA, Quirke P (1994) Frequency of allele loss of DCC, p53, RB1, WT1, NF1, NM23 and APC/MCC in colorectal cancer assayed by flourescent multiplex polymerase chain reaction. Br J Cancer 70:813–818

    PubMed  CAS  Google Scholar 

  3. Driemel O, Hertel K, Reichert TE, Kosmehl H (2006) Aktuelle Klassifikation der Präkursorläsionen des oralen Plattenepithelkarzinoms. Prinzipien der WHO-Klassifikation 2005. Mund Kiefer GesichtsChir 10:89–93

    Article  PubMed  CAS  Google Scholar 

  4. Duerr EM, Rollbrocker B, Hayashi Y, Peters N, Meyer-Puttlitz B, Louis DN, Schramm J, Wiestler OD, Parson R, Eng C, von Deimling A (1998) PTEN mutations in gliomas and glioneuronal tumors. Oncogene 16:2259–2264

    Article  PubMed  CAS  Google Scholar 

  5. Dunsche A, Härle F (2000) Die Krebsvorstufen der Mundschleimhaut – eine Übersicht. Laryngo-Rhino-Otologie, Laryngorhinootologie 79(7):423–237

    Article  CAS  Google Scholar 

  6. Epstein JB, Zhang L, Rosin M (2002) Advances in the diagnosis of oral premalignant and malignant lesions. J Can Dent Assoc 68(10):617–621

    PubMed  Google Scholar 

  7. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell, 61(5):759–67

    Article  CAS  Google Scholar 

  8. Grüttgen A, Reichenzeller M, Junger M, Schlien S, Affolter A, Bosch FX (2001) Detailed gene expression analysis but not microsatellite marker analysis of 9p21 reveals differential defects in the INK4a gene locus in the majority of head and neck cancers. J Pathol 194:311–317

    Article  PubMed  Google Scholar 

  9. Hahn M, Wieland I, Koufaki ON, Gorgens H, Sobottka SB, Schackert G, Schackert HK (1999) Genetic alterations of the tumor suppressor gene PTEN/MMAC1 in human brain metastases. Clin Cancer Res 5(9):2431–2437

    PubMed  CAS  Google Scholar 

  10. Hofele C, Joos S, Flechtenmacher C, Bosch FX, Lichter P, Mühling J, Freier K (2002) Möglichkeiten und Chancen der Gewebechiptechnologie bei Kopf-Hals-Tumoren Eine neue Technik zur schnellen Analyse von potenziellen Tumormarkern Mund Kiefer. Gesichts Chir 6:394–401

    CAS  Google Scholar 

  11. Jefferies S, Foulkes WD (2001) Genetic mechanisms in squamous cell carcinoma of the head and neck. Oral Oncol 37(2):115–26

    Article  PubMed  CAS  Google Scholar 

  12. Karsai S, Abel U, Roesch-Ely M, Affolter A, Hofele C, Joos S, Plinkert PK, Bosch FX (2007) Comparison of p16 (INK4a) expression with p53 alterations in head and neck cancer by tissue microarray analysis. J Pathol 211(3):314–22

    Article  PubMed  CAS  Google Scholar 

  13. Knudson AG Jr. (1978) Retinoblastoma: a prototypic hereditary neoplasm. Semin Oncol 5(1):57–60

    PubMed  Google Scholar 

  14. Koscielny S, v Eggeling F, Dahse R (2004) Untersuchungen zum Einfluss der Inaktivierung des Tumorsuppressorgens p16 auf die Prognose von Plattenepithelkarzinomen der Kopf-Hals-Region. Laryngo Rhino Otol 83:374–380

    Article  CAS  Google Scholar 

  15. Kresty LA, Mallery SR, Knobloch TJ, Song H, Lloyd M, Casto BC, Weghorst CM (2002) Alterations of p16(INK4a) and p14(ARF) in patients with severe oral epithelial dysplasia. Cancer Res 62(18):5295–300

    PubMed  CAS  Google Scholar 

  16. Lind PO (1987) Malignant transformation in oral leukoplakia. Scand J Dent Res 95:449–455

    PubMed  CAS  Google Scholar 

  17. Mao Li (2000) Can molecular assessment improve classification of head and neck premalignancy? Clinical Cancer Research 6:321–22

    Google Scholar 

  18. Miracca EC, Kowalski LP, Nagai MA (1999) High prevalence of p16 genetic alterations in head and neck tumours. Br J Cancer 81:677–683

    Article  PubMed  CAS  Google Scholar 

  19. Nagai MA (1999) Genetic alterations in head and neck squamous cell carcinomas. Braz J Med Biol Res 32(7):897–904

    Article  PubMed  CAS  Google Scholar 

  20. Papadimitrakopoulou V, Izzo J, Lippman SM, Lee JS, Fan YH, Clayman C, Ro JH, Hittelman WN, Lotan R, Hong WK, Mao L (1997) Frequent inactivation of p16INK4a in oral premalignant lesions. Oncogene 14(15):1799–1803

    Article  PubMed  CAS  Google Scholar 

  21. Pindborg JJ, Daftary DK, Mehta FS (1977) A follow-up study of sixty-one oral dysplastic precancerous lesions in Indian villagers. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 43:383–390

    CAS  Google Scholar 

  22. Poi MJ, Yen T, Li J, Song H, Lang J, Schuller D, Pearl D, Casto B, Tsai MD, Weghorst CM (2001) Somatic INK2a-ARF mutations: a significant mechanism of gene inactivation in squamous cell carcinomas of the head and neck. Mol Carcinogenesis 30:26–36

    Article  CAS  Google Scholar 

  23. Prime SS, Eveson JW, Guest PG, Parkinson EK, Paterson IC (1997) Early genetic and functional events in the pathogenesis of oral cancer. Radiat Oncol Investig 5(3):93–6

    Article  PubMed  CAS  Google Scholar 

  24. Reibel J (2003) Prognosis of oral pre-malignant lesions: significance of clinical, histopathological and molecular biological characteristics. Crit Rev Oral Biol Med 14:47–62

    Article  PubMed  Google Scholar 

  25. Rosin MP, Cheng X, Poh C, Lam WL, Huang Y, Lovas J, Berean K, Epstein JB, Priddy R, Le ND, Zhang L (2000) Use of allelic loss to predict malignant risk for low-grade oral epithelial dysplasia. Cancer Clinical Research 6:357–362

    CAS  Google Scholar 

  26. Sanchez-Aguilera A, Sanchez-Beato M, Garcia JF, Prieto I, Pollan M, Piris MA (2002) p14(ARF) nuclear overexpression in aggressive B-cell lymphomas is a sensor of malfunction of the common tumor suppressor pathways. Blood 99(4):1411–8

    Article  PubMed  CAS  Google Scholar 

  27. Scheifele C, Reichart PA (1998) Orale Leukoplakien bei manifestem Plattenepithelkarzinom. Eine klinisch prospektive Studie an 101 Patienten. Mund Kiefer GesichtsChir, 2:326–330

    Article  CAS  Google Scholar 

  28. Shanavaz SA, Bradley G, Regezi JA, Thakker N, Gao L, Hogg D, Jordan RCK (2001) Patterns of CDKN2A gene loss in sequential oral epithelial dysplasias and carcinomas. Cancer Res 61:2371–2375

    Google Scholar 

  29. Sherr CJ, Weber JD (2000) The ARF/p53 pathway. Curr Opin Genet Dev 10(1):94–99

    Article  PubMed  CAS  Google Scholar 

  30. Silverman S Jr, Gorsky M, Lozada F (1984). Oral leukoplakia and malignant transformation. A follow-up study of 257 patients Cancer 53:563–568

    Google Scholar 

  31. Tabor MP, Brakenhoff RH, Ruijter-Schippers HJ, Van der Wal JE, Snow GB, Leemans CR, Braakhuis BJ (2002) Multiple head and neck tumors frequently originate from a single preneoplastic lesion. Am J Pathol 161(3):1051–1060

    PubMed  CAS  Google Scholar 

  32. Tran TN, Liu Y, Takagi M, Yamaguchi A, Fujii H (2005) Frequent promoter hypermethylation of RASSF1A and p16INK4a and infrequent allelic loss other than 9p21 in betel-associated oral carcinoma in a Vietnamese non-smoking/non-drinking female population. J Oral Pathol Med 34:150–156

    Article  PubMed  CAS  Google Scholar 

  33. Tripathi A, Chunder SBN, Roy A, Sengupta A, Roy B, Roychowdhury S, Panda K (2003) Differential alterations of the genes in the CDKN2A-CCND1-CDK4-RB1 pathway are associated with the development of head and neck squamous cell carcinoma in Indian patients. J Cancer Res Clin Oncol 129:642–650

    Article  CAS  Google Scholar 

  34. Veltman JA, van Weert I, Aubele M, Bot FJ, Ramaekers FC, Manni JJ, Hopman AH (2001) Specific steps in aneuploidization correlate with loss of heterozygosity of 9p21, 17p13 and 18q21 in the progression of pre-malignant laryngeal lesions. Int J Cancer 91(2):193–199

    Article  PubMed  CAS  Google Scholar 

  35. Waber P, Dlugosz S, Cheng QC, Truelson J, Nisen PD (1997) Genetic alterations of chromosome band 9p21–22 in head and neck cancer are not restricted to p16INK4a. Oncogene 15:1699–1704

    Article  PubMed  CAS  Google Scholar 

  36. Weber A, Wittekind C, Tannapfel A (2003) Genetic and Epigenetic Alterations of 9p21 Gene Products in Benign and Malignant Tumors of the Head and Neck. Pathol Res Pract 199:391–397

    Article  PubMed  CAS  Google Scholar 

  37. Wu X, Bayle JH, Olson D, Levine AJ (1993) The p53-mdm2 autoregulatory feedback loop. Genes Dev 7:1126–1132

    Article  PubMed  Google Scholar 

  38. Schraml P, Struckmann K, Bednar R, Fu W, Gasser T, Wilber K, Kononen J, Sauter G, Mihatsch MJ, Moch H (2001) CDKNA2A mutation analysis, protein expression, and deletion mapping of chromosome 9p in conventional clear-cell renal carcinomas: evidence for a second tumor suppressor gene proximal to CDKN2A. Am J Pathol 158(2):593–601

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Nitsche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nitsche, M., Koy, S., Mörz, M. et al. Untersuchung der Tumorsuppressoren p16INK4a und p14ARF in Mundschleimhautleukoplakien. Mund Kiefer GesichtsChir 11, 317–326 (2007). https://doi.org/10.1007/s10006-007-0086-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10006-007-0086-0

Schlüsselwörter

Keywords

Navigation