Skip to main content

Advertisement

Log in

Experimentelle Untersuchung zur Oberflächenaktivierung von Implantaten durch liposomale Vektoren—eine Pilotstudie

Experimental pilot study on surface activation of implants with liposomal vectors

  • Originalien
  • Published:
Mund-, Kiefer- und Gesichtschirurgie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Beschichtung von Titanimplantaten mit Mitogenen oder Morphogenen kann eine zeitlich verkürzte Einheilung und ein größeres Knochen-Implantat-Interface bedeuten [1, 5, 15]. Die Sicherheit des Einsatzes von Liposomen als DNA-Träger ist in der Literatur vielfach beschrieben [4, 13, 17]. Ziel der vorgestellten Pilotstudie war es, im Tiermodell Möglichkeiten der Oberflächenaktivierung von Implantaten und zur Behandlung periimplantärer Defekte durch Liposome zu evaluieren, die für BMP-2 („bone morphogenetic protein“) kodierende DNA enthielten.

Material und Methoden

Hierfür wurden neun 10×10 mm große Defekte im Os frontale des Hausschweins (n=3) angelegt und in diesen insgesamt 27 Implantate (3,5×14 mm) zentral so inseriert, dass der apikale Implantatbereich im direkten Knochen-Implantat-Kontakt stand. Somit war die Primärstabilität gewährleistet, während der zervikale Implantatbereich (obere 10 mm) den periimplantären Defekt simulierte. Zur Implantatlagerkonditionierung wurden Liposome angewandt, die BMP-2-DNA oder GFP-DNA („green fluorescence protein“) enthielten. Im ersten Versuchsarm wurden Liposomen mit GFP-DNA auf einer Kollagenmatrix direkt in den periimplantären Defekt appliziert. Im zweiten Versuchsarm erfolgte die Insertion von Implantaten, deren Oberfläche direkt mit BMP-2-DNA-haltigen Liposomen beschichtet war. Danach wurden die gewonnenen Proben der immunhistochemischen Aufarbeitung zum Nachweis von GFP und BMP-2 im Defektbereich und am Knochen-Implantat-Interface zugeführt.

Ergebnisse

Immunhistochemisch ließ sich zum Entnahmezeitpunkt am 3. postoperativen Tag im periimplantären Defekt eine erhöhte GFP-Expression erkennen, womit die Wirksamkeit des liposomalen Vektors für das gewählte Tiermodell nachgewiesen werden konnte. Am Knochen-Implantat-Interface der mit BMP-DNA beschichteten Implantate zeigte sich eine erhöhte BMP-2-Aktivität. So war eine In-vivo-Validierung des liposomalen Vektors auch für den Transfer von BMP-2-DNA im gewählten Versuchsmodell möglich. Daneben konnte ein System etabliert werden, mit dessen Hilfe BMP-2 kontinuierlich über einen größeren Zeitraum im Bereich der Implantatoberfläche freigesetzt werden kann.

Schlussfolgerung

Mithilfe dieser Pilotstudie gelang es, sowohl bezüglich des Einflusses der Implantatoberflächenaktivierung auf das Knochen-Implantat-Interface als auch zur Fragestellung der Behandlung periimplantärer Defekte Aussagen zu machen, die es ermöglichen, in einem laufenden Langzeitversuch entsprechend signifikante Daten zu gewinnen.

Abstract

Background

Surface coating with mitogenic or morphogenic proteins can improve the healing of bone adjacent to implants and increase the bone-implant interface [1, 5, 15]. Clinical surveys have shown liposome-mediated gene transfer to be a promising and safe new therapeutic method [4, 13, 17]. The aim of our study was to evaluate an experimental model of new approaches for topical treatment of the implant surface and of periimplant defects by using DNA liposomes encoding for BMP-2 (bone morphogenetic protein).

Material and methods

A total of 27 implants (3.5×14 mm) were placed in critically sized defects of the frontal skull bone of adult pigs (n=3). The bottom of the implant was placed in the base of the defect which guaranteed primary stability, whereas the superior part of the implant (10 mm) represented an implant in a defect area. Liposomes containing DNA encoding for BMP-2 and GFP (green fluorescence protein) were used. In a first trial GFP-DNA liposomes on a collagen matrix were directly applied to the periimplant defect. In a second stage, the surface of the implants was encoded with BMP-2 DNA liposomes. Subsequently, these implants were inserted in the manner described. The resulting bone samples were prepared for immunohistochemical staining. Staining for GFP was performed in the area of the defect and for BMP-2 on the bone-implant interface.

Results

Immunohistochemical staining on day 3 postoperatively revealed an increased GFP expression in the periimplant defect. Therefore, the effectiveness of the liposomal vector was verified for the chosen animal model. On the surface of the implants encoded with BMP-2 DNA liposomes an increased BMP-2 expression was found. Thus, the liposomal vector system was validated also for BMP-2 DNA transfer in the chosen animal model. Further, the established system allows a sustainable and delayed release of BMP-2 in the area of the bone-implant interface.

Conclusions

As a result of the study we were able to collect data concerning the influence of implant surface conditioning on the bone-implant interface and on therapeutically relevant options for the treatment of periimplant defects. These approaches are currently being evaluated in a long-term study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Abrahamsson I, Zitzmann NU, Berglundh T, Wennerberg A, Lindhe J (2001) Bone and soft tissue integration to titanium implants with different surface topography: an experimental study in the dog. Int J Oral Maxillofac Implants 16:323–332

    CAS  PubMed  Google Scholar 

  2. Adell R, Eriksson B, Lekholm U, Branemark PI, Jemt T (1990) Long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int J Oral Maxillofac Implant 5:347–359

    CAS  Google Scholar 

  3. Branemark PI, Hansson BO, Adell R, et al (1977) Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl 16:1–132

    CAS  PubMed  Google Scholar 

  4. Brisson M, Huang L (1999) Liposomes: conquering the nuclear barrier. Curr Opin Mol Ther 1:140–146

    CAS  PubMed  Google Scholar 

  5. Cochran DL, Schenk R, Buser D, Wozney JM, Jones AA (1999) Recombinant human bone morphogenetic protein-2 stimulation of bone formation around endosseous dental implants. J Periodontol 70:139–150

    CAS  PubMed  Google Scholar 

  6. Cornelini R, Artese L, Rubini C, et al. (2001) Vascular endothelial growth factor and microvessel density around healthy and failing dental implants. Int J Oral Maxillofac Implants 16:389–393

    CAS  PubMed  Google Scholar 

  7. Danesh-Meyer MJ (2000) Tissue engineering in periodontics and implantology using rhBMP-2. Ann R Australas Coll Dent Surg 15:144–149

    CAS  PubMed  Google Scholar 

  8. Donath K, Breuner G (1982) A method for the study of undecalcified bones and teeth with attached soft tissues. The Sage-Schliff (sawing and grinding) technique. J Oral Pathol 11:318–326

    CAS  PubMed  Google Scholar 

  9. Friess W, Uludag H, Foskett S, Biron R (1999) Bone regeneration with recombinant human bone morphogenetic protein-2 (rhBMP-2) using absorbable collagen sponges (ACS): influence of processing on ACS characteristics and formulation. Pharm Dev Technol 4:387–396

    Article  CAS  PubMed  Google Scholar 

  10. Groeneveld EH, Burger EH (2000) Bone morphogenetic proteins in human bone regeneration. Eur J Endocrinol 142:9–21

    CAS  PubMed  Google Scholar 

  11. Hönig JF, Merten H A (1993) Das Göttinger Miniaturschwein (GMS) als Versuchstier in der humanmedizinischen osteologischen Grundlagenforschung. Z Zahnärztl Implantol 2:237–243

  12. Hollinger JO, Uludag H, Winn SR (1998) Sustained release emphasizing recombinant human bone morphogenetic protein-2. Adv Drug Deliv Rev 31:303–318

    Article  PubMed  Google Scholar 

  13. Johnson-Saliba M, Jans DA (2001) Gene therapy: optimising DNA delivery to the nucleus. Curr Drug Targets 2:371–399

    CAS  PubMed  Google Scholar 

  14. Kubler NR, Wurzler KK, Reuther JF, Sieber E, Kirchner T, Sebald W (2000) Effect of different factors on the bone forming properties of recombinant BMPs. Mund Kiefer GesichtsChir 4 (Suppl 2):465–469

    Google Scholar 

  15. Lazzara RJ, Porter SS, Testori T, Galante J, Zetterqvist L (1998) A prospective multicenter study evaluating loading of osseotite implants two months after placement: one-year results. J Esthet Dent 10:280–289

    CAS  PubMed  Google Scholar 

  16. Lekholm U, Zarb G (1985) Patient selection and preparation. In: Branemark PI, Zarb G, Albrektson T (eds) Tissue-integrated prostheses: osseointegration in clinical dentistry. Quintessence, Chicago, pp 69–123

  17. Li S, Huang L (2000) Nonviral gene therapy: promises and challenges. Gene Ther 7:31–34

    CAS  PubMed  Google Scholar 

  18. Loser P, Huser A, Hillgenberg M, Kumin D, Both GW, Hofmann C (2002) Advances in the development of non-human viral DNA-vectors for gene delivery. Curr Gene Ther 2:161–171

    CAS  PubMed  Google Scholar 

  19. Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR (1998) Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 85:638–646

    CAS  PubMed  Google Scholar 

  20. Miller AD (2003) The problem with cationic liposome/micelle-based non-viral vector systems for gene therapy. Curr Med Chem 10:1195–211

    CAS  PubMed  Google Scholar 

  21. Misch K (1999) Bone density: a key determinant for clinical success. In: Misch K (ed) Implant dentistry. Mosby, St. Louis, pp 345–380

  22. Mitani K, Kubo S (2002) Adenovirus as an integrating vector. Curr Gene Ther 2:135–144

    CAS  PubMed  Google Scholar 

  23. Niidome T, Huang L (2002) Gene therapy progress and prospects: nonviral vectors. Gene Ther 9:1647–1652

    Article  CAS  PubMed  Google Scholar 

  24. Nkenke E, Kloss F, Wiltfang J, Schultze-Mosgau S, Stech B, Radespiel-Troger M, Neukam FW (2002) Histomorphometric and fluorescence microscopic analysis of bone remodeling after installation of implants using an osteotome technique. Clin Oral Implants Res 13:595–602

    Article  PubMed  Google Scholar 

  25. Olmsted EA, Blum JS, Rill D, Yotnda P, Gugala Z, Lindsey RW, Davis AR (2001) Adenovirus-mediated BMP2 expression in human bone marrow stromal cells. J Cell Biochem 82:11–21

    Article  CAS  PubMed  Google Scholar 

  26. Park J, Ries J, Gelse K, Kloss F, van der Mark K, Willfang J, Neukam FW, Schneider H (2003) Bone regeneration in critical size defects by cell-mediated BMP-2 gene transfer: a comparison of adenoviral vectors and liposomes. Gene Ther 10:1089–1098

    Article  PubMed  Google Scholar 

  27. Reddi AH (2001) Bone morphogenetic proteins: from basic science to clinical applications. J Bone Joint Surg Am 83 (Suppl 1):1–6

    Article  Google Scholar 

  28. Roemer K, Friedmann T (1992) Concepts and strategies for human gene therapy. Eur J Biochem 208:211–225

    CAS  PubMed  Google Scholar 

  29. Roessel van P, Brand AH (2002) Imaging into the future: visualizing gene expression and protein interactions with fluorescent proteins. Nat Cell Biol 4:E15–E20

    Article  PubMed  Google Scholar 

  30. Salata LA, Franke-Stenport V, Rasmusson L (2002) Recent outcomes and perspectives of the application of bone morphogenetic proteins in implant dentistry. Clin Implant Dent Relat Res 4:27–32

    PubMed  Google Scholar 

  31. Schierano G, Bellone G, Cassarino E, Pagano M, Preti G, Emanuelli G (2003) Transforming growth factor-beta and interleukin-10 in oral implant sites in humans. J Dent Res 82:428–432

    CAS  PubMed  Google Scholar 

  32. Schliephake H (2002) Bone growth factors in maxillofacial skeletal reconstruction. Int J Oral Maxillofac Surg 31:469–484

    Article  CAS  PubMed  Google Scholar 

  33. Schlegel KA, Kloss FR, Kessler P, Schultze-Mosgau S, Nkenke E, Wiltfang J (2003) Bone conditioning to enhance implant osseointegration: an experimental study in pigs. Int J Oral Maxillofac Implants 18:505–511

    PubMed  Google Scholar 

  34. Sigurdsson TJ, Fu E, Tatakis DN, Rohrer MD, Wikesjo UM (1997) Bone morphogenetic protein-2 for peri-implant bone regeneration and osseointegration. Clin Oral Implants Res 8:367–374

    Article  CAS  PubMed  Google Scholar 

  35. Sykaras N, Triplett RG, Nunn ME, Iacopino AM, Opperman LA (2001) Effect of recombinant human bone morphogenetic protein-2 on bone regeneration and osseointegration of dental implants. Clin Oral Implants Res 12:339–349

    Article  CAS  PubMed  Google Scholar 

  36. Zabner J, Fasbender AJ, Moninger T, Poellinger KA, Welsh MJ (1995) Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem 270:18997–19007

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Thorwarth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thorwarth, M., Schlegel, K.A., Wiltfang, J. et al. Experimentelle Untersuchung zur Oberflächenaktivierung von Implantaten durch liposomale Vektoren—eine Pilotstudie. Mund Kiefer GesichtsChir 8, 250–255 (2004). https://doi.org/10.1007/s10006-004-0536-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10006-004-0536-x

Schlüsselwörter

Keywords

Navigation