Skip to main content
Log in

Electronic analysis of n-propyl xanthate complexes with group 12 metals: a theoretical–experimental study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Xanthates are organic compounds of great interest in coordination chemistry due to their different basic sites, which allow them to form complexes with different coordination modes and geometries. These compounds are relevant in the environment and act as heavy metal collectors in aqueous environments. In this theoretical–experimental work, electronic spectroscopy studies of n-propyl xanthate complexes with group 12 metals were performed. This study verified structural differences in these systems, depending on the environment in which they are inserted. In addition, structural differences were observed when the solid was changed to an n-hexane solution. Thus, it was observed that the complexes assume a mononuclear structure in solution, while they present a polymeric form in the solid phase. The electronic spectra obtained through TD-DFT calculations were compared to those of the previously synthesized complexes. In the final theoretical analysis, the main orbitals involved in these transitions were assigned using population analysis calculations. The synthesis of the complexes was confirmed through infrared (MID and FAR), UV‒Vis, Raman, and NMR-1H spectroscopic analyses.

Methods

The structures of the mononuclear and polymeric complexes were optimized in vacuum and n-hexane. Under vacuum, DFT levels M06L/6–311 + + G** + LANL2TZ and M06L/def2-TZVP were used for the mononuclear complexes, and M06L/LANL2DZ + LANL2 were used for the polymer complexes. For the calculations of the mononuclear complexes in n-hexane, the same level of theory was used for the solid state. TD-DFT calculations for 300 excited states were performed with the same levels of theory and used the optimized structures of the complexes. Furthermore, population analysis was carried out on all the systems studied. Gaussian 09 software was used for the structure optimization, TD-DFT, and population analysis calculations. GaussSum software was used to evaluate the molecular orbitals and electronic spectra.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

This published article and its supplementary information file include all the data generated or analyzed during this study.

References

  1. Werner A (1893) Beitrag zur Konstitution anorganischer Verbindungen. Z Anorg Chem 3:267–330. https://doi.org/10.1002/zaac.18930030136

    Article  Google Scholar 

  2. Ruixuan Q, Kunlong L, Qingyan W, Zheng N (2020) Surface coordination chemistry of atomically dispersed metal catalysts. Chem Rev 120:11810–11899. https://doi.org/10.1021/acs.chemrev.0c00094

    Article  CAS  Google Scholar 

  3. Smithells A (1906) Neuere anschauungen auf dem gebiete der anorganischen chemie. Nature 73:433–434. https://doi.org/10.1038/073433a0

    Article  Google Scholar 

  4. Busch DH (1993) The complete coordination chemistry—one practioner’s perspective. Chem Rev 93:847–860. https://doi.org/10.1021/cr00019a001

    Article  CAS  Google Scholar 

  5. Chen Z, Deutsch TG, Dinh HN, Domen K, Emery K, Forman AJ, Gaillard N, Garland R, Heske C, Jaramillo TF, Kleiman-Shwarsctein A, Miller E, Takanabe K, Turner J (2013) Photoelectrochemical water splitting. Energy book series. UV-Vis spectroscopy. Springer Briefs, New York, pp 49–61

    Google Scholar 

  6. Rocha FS, Gomes AJ, Lunardi CN, Kaliaguine S, Patience GS (2018) Experimental methods in chemical engineering: ultraviolet visible spectroscopy—UV-Vis. Can J Chem Eng 96:2512–2517. https://doi.org/10.1002/cjce.23344

    Article  CAS  Google Scholar 

  7. Liu K, Shi W, Cheng P (2011) The coordination chemistry of Zn(II), Cd(II) and Hg(II) complexes with 1,2,4-triazole derivatives. Dalton Trans 40:8475–8490. https://doi.org/10.1039/c0dt01578d

    Article  CAS  PubMed  Google Scholar 

  8. Heering C, Francis B, Nateghi B, Makhloufi G, Ludeke S, Janiak C (2016) Syntheses, structures and properties of group 12 element (Zn, Cd, Hg) coordination polymers with a mixed-functional phosphonatebiphenyl-carboxylate linker. Cryst Eng Comm 18:5209–5223. https://doi.org/10.1039/C6CE00587J

    Article  CAS  Google Scholar 

  9. Onwudiwe DC, Krüger TPJ, Strydom CA (2014) Laser assisted solid-state reaction for the synthesis of ZnS and CdS nanoparticles from metal xanthate. Mater Lett 116:154–159. https://doi.org/10.1016/j.matlet.2013.10.118

    Article  CAS  Google Scholar 

  10. Friebolin W, Schilling G, Zöller M, Amtmann E (2005) Antitumoral activity of nonplatinum xanthate complexes. J Med Chem 48:7925–7931. https://doi.org/10.1021/jm040899l

    Article  CAS  PubMed  Google Scholar 

  11. Banti CN, Kourkoumelis N, Tsiafoulis CG, Skoulika S, Hadjikakou SK (2017) Silver(I) complexes of methyl xanthate against human adenocarcinoma breast cancer cells. Polyhedron 121:115–122. https://doi.org/10.1016/j.poly.2016.09.056

    Article  CAS  Google Scholar 

  12. Qadir AM (2016) Synthesis, characterization and antibacterial activities of two nickel(II) complexes with xanthate derivatives and N, N, N′, N′-tetramethylethylenediamine as ligands. Transit Met Chem 42:35–39. https://doi.org/10.1007/s11243-016-0103-y

    Article  CAS  Google Scholar 

  13. Chang Q, Hao X, Duan L (2008) Synthesis of crosslinked starch-graft-polyacrylamide-co-sodium xanthate and its performances in wastewater treatment. J Hazard Mater 159:548–553. https://doi.org/10.1080/17458080.2017.1321793

    Article  CAS  PubMed  Google Scholar 

  14. Miranda DB, Quintal SMO, Ferreira GB (2021) Applications of xanthate metal compounds in the last ten years: a review. Rev Virtual Quim. https://doi.org/10.21577/1984-6835.20220054

  15. Amrollahi L, Massinaei M, Moghaddam ZA (2019) Removal of the residual xanthate from flotation plant tailings using bentonite modified by magnetic nanoparticles. Miner Eng 134:142–155. https://doi.org/10.1016/j.mineng.2019.01.031

    Article  CAS  Google Scholar 

  16. Zeise WC (1834) Vorläufiger bericht von erneuten unter-suchungen über die xanthogen. Ann Phys Chem XXXII 108:305–307. https://doi.org/10.1002/andp.18341082002

    Article  Google Scholar 

  17. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. In: Luch A (ed). Mol Clin Environ Toxicol 101:133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

  18. Wang S, Zhang C, Chang Q (2017) Synthesis of magnetic crosslinked starch-graft-poly(acrylamide)-co-sodium xanthate and its application in removing heavy metal ions. J Exp Nanosci 12:270–284. https://doi.org/10.1080/17458080.2017.1321793

    Article  CAS  Google Scholar 

  19. Johri N, Jacquillet G, Unwin R (2010) Heavy metal poisoning: the effects of cadmium on the kidney. Biometals 23:783–792. https://doi.org/10.1007/s10534-010-9328-y

    Article  CAS  PubMed  Google Scholar 

  20. Mant TGK, Lewis JL, Mattoo TK, Rigden SPA, Volans GN, House IM, Wakefield AJ, Cole RS (1987) Mercury poisoning after disc-battery ingestion. Hum Toxicol 6:179–181. https://doi.org/10.1177/096032718700600212

    Article  CAS  PubMed  Google Scholar 

  21. Ashurst KG, Finkelstein NP, Rice NM (1970) Studies of cyanide–xanthate mixed ligand complexes of mercury(II) in aqueous solution. J Chem Soc A: Inorg Phys Theor 0:2302–2307. https://doi.org/10.1039/J19700002302

  22. Essam S, Salah D, Hassan M, Ibrahim I (2024) Modified coprecipitated copper ferrite nanoparticles as a dual-agent for Pb2+ and Cd2+ ions removal and antibacterial treatment in wastewater. Egyp J Pure Appl Sci 62:43–64. https://doi.org/10.21608/ejaps.2024.249912.1078

    Article  Google Scholar 

  23. Liang S, Guo X, Tian Q (2011) Adsorption of Pb2+ and Zn2+ from aqueous solutions by sulfured orange peel. Desalination 275:212–216. https://doi.org/10.1016/j.desal.2011.03.001

    Article  CAS  Google Scholar 

  24. Corminboeuf C, Tran F, Weber J (2006) The role of density functional theory in chemistry: some historical landmarks and applications to zeolites. J Mol Struct: Theochem 762:1–7. https://doi.org/10.1016/j.theochem.2005.07.036

    Article  CAS  Google Scholar 

  25. Lewards EG (2011) Computational chemistry: Introduction to the theory and applications of molecular and quantum mechanics. Springer, Canada

  26. Abd El-Lateef HM, Khalaf MM, Kandeel M, Amer AA, Abdelhamid AA, Abdou A (2023) Designing, characterization, biological, DFT, and molecular docking analysis for new FeAZD, NiAZD, and CuAZD complexes incorporating 1-(2-hydroxyphenylazo)−2-naphthol (H2AZD). Comp Biol Chem 105:107908. https://doi.org/10.1016/j.compbiolchem.2023.107908

    Article  CAS  Google Scholar 

  27. Abd El Aleem M, Elhady O, Abdou A, Alhashmialameer D, Eskander TNA, Abu-Dief AM (2023) Development of new 2-(benzothiazol-2-ylimino)-2,3-dihydro-1H-imidazol-4-ol complexes as robust catalysts for the synthesis of thiazole 6-carbonitrile derivatives supported by DFT studies. J Mol Struct 1292:136188. https://doi.org/10.1016/j.molstruc.2023.136188

    Article  CAS  Google Scholar 

  28. Murugan T, Venkatesh R, Geetha K, Abdou A (2023) Synthesis, spectral investigation, DFT, antibacterial, antifungal and molecular docking studies of Ni(II), Zn(II), Cd(II) complexes of tetradentate Schiff-base ligand. Asian J Chem 35:1509–1517. https://doi.org/10.14233/ajchem.2023.27808

    Article  CAS  Google Scholar 

  29. Abd El-Lateef HM, Khalaf MM, Amer AA, Kandeel M, Abdelhamid AA, Abdou A (2023) Synthesis, characterization, antimicrobial, density functional theory, and molecular docking studies of novel Mn(II), Fe(III), and Cr(III) complexes incorporating 4-(2-hydroxyphenyl azo)-1-naphthol (Az). ACS Omega 8:25877–25891. https://doi.org/10.1021/acsomega.3c01413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Najar AM, Eswayah A, Moftah MB, Ruwida OMK, Bobtaina E, Najwa M, Elhisadi TA, Tahani A, Tawati SM, Khalifa AMM, Abdou A, DowAltome AE (2023) Rigidity and flexibility of pyrazole, s-triazole, and v-triazole derivative of chloroquine as potential therapeutic against COVID-19. J Med Chem Sci 6:2056–2084. https://doi.org/10.26655/JMCHEMSCI.2023.9.14

    Article  CAS  Google Scholar 

  31. Shaaban S, Al-Faiyz YS, Alsulaim GM, Alaasar M, Amri N, Ba-Ghazal H, Al-Karmalawy AA, Abdou A (2023) Synthesis of new organoselenium-based succinanilic and maleanilic derivatives and in silico studies as possible SARS-CoV-2 main protease inhibitors. Inorganics 11:321. https://doi.org/10.3390/inorganics11080321

    Article  CAS  Google Scholar 

  32. Wang Y, Jina X, Yub HS, Truhlarb DG, He X (2017) Revised M06-L functional for improved accuracy on chemical reaction barrier heights, noncovalent interactions, and solid-state physics. Proc Natl Acad Sci 114:8487–8492. https://doi.org/10.1073/pnas.1705670114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr., Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2009) Gaussian 09, version G09 D; Gaussian, Inc., Wallingford CT.

  34. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681. https://doi.org/10.1002/jcc.10189

    Article  CAS  PubMed  Google Scholar 

  35. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094. https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  36. Miranda DB, Quintal S, Ferreira GB (2023) Theoretical studies of Zn2+ complexes with alkyl xanthate ligands: a thermochemical, electronic energy decomposition, and natural bond orbital analysis. J Mol Model 29:1–19. https://doi.org/10.1007/s00894-023-05604-6

    Article  CAS  Google Scholar 

  37. Miranda DB, Quintal S, Ferreira GB (2024) Theoretical studies in heavy metal complexation: understanding the structural, thermochemical, and electronic aspects. J Braz Chem Soc 35:1–21. https://doi.org/10.21577/0103-5053.20230141

    Article  CAS  Google Scholar 

  38. Melengate GS, Quattrociocchi D, Siqueira Júnior JM, Stoyanov SR, Costa LM, Ferreira GB (2019) DFT study of the interaction between the Ni2+ and Zn2+ metal cations and the 1,2-dithiolene ligands: electronic, geometric and energetic analysis. J Braz Chem Soc 30:1161–1177. https://doi.org/10.21577/0103-5053.20190011

    Article  CAS  Google Scholar 

  39. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305. https://doi.org/10.1039/B508541A

    Article  CAS  PubMed  Google Scholar 

  40. Coates RA, McNary CP, Boles GC, Berden G, Oomens J, Armentrout PB (2015) Structural characterization of gas-phase cysteine and cysteine methyl ester complexes with zinc and cadmium dications by infrared multiple photon dissociation spectroscopy. Phys Chem Chem Phys 17:25799–25808. https://doi.org/10.1039/C5CP01500F

    Article  CAS  PubMed  Google Scholar 

  41. Al-Fahdawi A, Alsalihi E (2018) Synthesis and characterization of iron(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes using diphenylmethyl xanthate ligand. Aro: Sci J Koya Univ 6:33–37. https://doi.org/10.14500/aro.10243

    Article  Google Scholar 

  42. Davara D, Zorlu Y (2017) Group 12 metal coordination polymers built on a flexibe hexakis(3-pyridyloxy)cyclotriphosphazene ligand: effect of the central metal ions on the construction of coordination polymers. Polyhedron 127:1–8. https://doi.org/10.1016/j.poly.2017.01.040

    Article  CAS  Google Scholar 

  43. Giribabu K, Suresh R, Manigandan R, Vijayaraj A, Prabu R, Narayanan V (2012) Cadmium sulphide nanorods: synthesis, characterization and their photocatalytic activity. Bull Korean Chem Soc 33:2910–2916. https://doi.org/10.5012/bkcs.2012.33.9.2910

    Article  CAS  Google Scholar 

  44. Matsunaga Y, Fujisawa K, Ibi N, Amir N, Miyashita Y, Okamoto K (2005) Zn(II) complexes with aliphatic thiolates: (Et4N)[Zn(SAd)3] and (Et4N)2[{Zn(ScHex)2}2(μ-ScHex)2]. Bull Chem Soc Jpn 78:1285–1287. https://doi.org/10.1246/bcsj.78.1285

    Article  CAS  Google Scholar 

  45. Bakly AAK, Collison D, Ahumada-Lazo R, Binks DJ, Smith M, Raftery J, Whitehead GFS, O’Brien P, Lewis DJ (2021) Synthesis, X-ray single-crystal structural characterization, and thermal analysis of Bis(O-alkylxanthato)Cd(II) and Bis(O-alkylxanthato) Zn(II) complexes used as precursors for Cadmium and Zinc sulfide thin films. Inorg Chem 60:7573–7583. https://doi.org/10.1021/acs.inorgchem.1c01110

    Article  CAS  PubMed  Google Scholar 

  46. Bahij EF, Ara I, Lachkar M, Larbi NB (2003) Synthesis and characterization of ethylxanthato complexes of zinc(II) with P-donor ligands. Transit Metal Chem 28:908–912. https://doi.org/10.1023/A:1026326404549

    Article  Google Scholar 

  47. Drew MGB, Hasan M, Hobson RJ, Rice AD (1986) Reactions of [Zn{S2P(OR)2}2] with Nitrogen bases and the single-crystal X-ray structures of [Zn{S2P(OPri)2}2]. H2NCH2CH2NH2 and [Zn{S2P(OPri)2}2]NC5H5. Dalton Trans 5:1161–1166. https://doi.org/10.1039/DT9860001161

    Article  Google Scholar 

  48. Corwin DT, Koch SA (1988) Crystal structures of Zn(SR)2 complexes: structural models for the proposed [Zn(cys-S)2(his)2] center in transcription factor IIIA and related nucleic acid binding proteins. Inorg Chem 27:493–496. https://doi.org/10.1021/ic00276a011

    Article  CAS  Google Scholar 

  49. Ara I, Bahij FE (2004) Synthesis and crystal structure of a zinc tris(xanthate) anionic derivative with a diaminoacridine cation. Inorg Chem Comm 7:1091–1094. https://doi.org/10.1016/j.inoche.2004.07.013

    Article  CAS  Google Scholar 

  50. Mautner FA, Morsy AM, Youssef A, Goher MAS (1997) Polymeric complexes of cadmium(II) bridged simultaneously by tetradentate picolinato and μ(1,1)-azido or μ(N, S)-thiocyanato anions. Synthesis and structural characterization of [Cd(picolinato)(N3)]n and [Cd(picolinato)(NCS)]n. Polyhedron 16:235–242. https://doi.org/10.1016/0277-5387(96)00274-4

    Article  CAS  Google Scholar 

  51. Rietveld HM, Maslen EG (1965) The crystal structure of cadmium n-butyl xanthate. Acta Crystallogr 18:429–436. https://doi.org/10.1107/S0365110X65000956

    Article  CAS  Google Scholar 

  52. Tiekink ERT, Winter G (1992) Inorganic xanthates: a structural perspective. J Rev Inorg Chem 12:183–302. https://doi.org/10.1515/REVIC.1992.12.3-4.183

    Article  CAS  Google Scholar 

  53. Hounslow AM, Lincoln SF, Tiekink ERT (1989) Correlations between nuclear magnetic resonance spectra and crystal structure. A 13C nuclear magnetic resonance study in the solid-state of bis(xanthato) complexes of mercury(II); The crystal and molecular structure of bis(n-propyldithiocarbonato)mercury(II). J Chem Soc Dalton Trans 21:133–137. https://doi.org/10.1039/DT9890000233

    Article  Google Scholar 

  54. Cox MJ, Tiekink ERT (1999) Structural diversity in mercury(II)bis(O-alkyldithiocarbonate) compounds. Z Kristallogr 214:486–491. https://doi.org/10.1524/zkri.1999.214.8.486

    Article  CAS  Google Scholar 

  55. Chieh C, Moynihan KJ (1980) Xanthate and dithiocarbamate complexes of group IIB elements, and an interesting relationship between two mercury(II) ethylxanthate phases. Acta Crystallogr 36:1367–1371. https://doi.org/10.1107/S0567740880006097

    Article  Google Scholar 

  56. Batsanov SS (2001) van der Waals radii of elements. Inorg Mater 37:871–885. https://doi.org/10.1023/A:1011625728803

    Article  CAS  Google Scholar 

  57. Mansouri TH, Zareian JS, Saeidifar M, Ghasemi A, Ghaemi H, Heydari A (2017) Synthesis, characterization and in vitro antimicrobial screening of the xanthate derivates and their iron(II) complexes. Iran J Chem Chem Eng 36:43–54. https://doi.org/10.30492/IJCCE.2017.25477

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support received from the Fundação Carlos Chagas de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Pró-Reitoria de Pesquisa, Pós-Graduação e Inovação (Proppi-UFF), and Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brasil (CNPq). Daniella. B. Miranda acknowledges the doctorate fellowship granted for Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES). We would also like to thank the Laboratory of Computational Chemistry, LMQC – UFF.

Funding

This work was supported by Fundação Carlos Chagas de Amparo à Pesquisa do Estado do Rio de Janeiro-FAPERJ (Grant numbers E-26/210.302/2019 and E-26/211.091/2019), Pró-Reitoria de Pesquisa, Pós-Graduação e Inovação-Proppi-UFF (FOPESQ-2020) and Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brasil (CNPq) (Grant number 477833/2013–6).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design of this manuscript. Daniella Miranda wrote the first draft of the manuscript, and Dra. Susana Quintal and Dr. Glaucio Ferreira performed the critical review. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Glaucio B. Ferreira.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2621 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Miranda, D.B., Quintal, S. & Ferreira, G.B. Electronic analysis of n-propyl xanthate complexes with group 12 metals: a theoretical–experimental study. J Mol Model 30, 163 (2024). https://doi.org/10.1007/s00894-024-05950-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-05950-z

Keywords

Navigation