Skip to main content
Log in

Comparison of Cu3, Cu5, and Cu7 clusters as potential antioxidants: A theoretical quest

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Herein, we compare and contrast the dual roles of Cun clusters (n = 3, 5, and 7 atoms) in scavenging or generating RO free radicals from ROH at the theoretical levels (where R = H, methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, and phenyl). This investigation is performed in water media to mimic the actual environment in the biological system. In the presence of the Cun clusters, bond dissociation energy (BDE) of RO–H and R–OH is reduced. This is clear evidence for the increased possibility of both the RO–H and R–OH bonds breakage and scavenging of RO radicals. The nature of anchoring bonds responsible for the interaction of Cun clusters with ROH and RO are interpreted using the quantum theory of atoms in molecules (QTAIM) and the natural bond orbital (NBO) analysis. The DFT results indicate that the O⋅⋅⋅Cu bond is stronger and has more covalent character in RO⋅⋅⋅Cun radical complexes than in ROH⋅⋅⋅Cun. Therefore, the interactions of Cun clusters with RO radicals (antioxidant) are more pronounced than their interactions with ROH non-radicals (pro-oxidant).

Methods

The GAMESS software package was utilized in this paper. The B3LYP and M06 functions with the 6–311 +  + G(d,p), and LANL2DZ/SDD basis sets was used to perform the important geometrical parameters of RO⋅⋅⋅Cun and ROH⋅⋅⋅Cun, binding energy (Eb), and bond dissociation energy (BDE).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Luo Z, Castleman A Jr, Khanna SN (2016) Chem Rev 116:14456–14492

    Article  CAS  PubMed  Google Scholar 

  2. Dietrich G, Krückeberg S, Lützenkirchen K, Schweikhard L, Walther C (2000) J Chem Phys 112:752–760

    Article  CAS  Google Scholar 

  3. Spasov VA, Lee T-H, Ervin KM (2000) J Chem Phys 112:1713–1720

    Article  CAS  Google Scholar 

  4. Mondal K, Manna D, Ghanty TK, Banerjee A (2014) Chem Phys 428:75–81

    Article  CAS  Google Scholar 

  5. Mills G, Gordon MS, Metiu H (2002) Chem Phys Lett 359:493–499

    Article  CAS  Google Scholar 

  6. Kryachko ES, Remacle F (2007) The gold-ammonia bonding patterns of neutral and charged complexes Au m±1–(NH3)n. I. Bonding and charge alternation. J Chem Phys 127:19

  7. Wells DH Jr, Delgass WN, Thomson KT (2002) J Chem Phys 117:10597–10603

    Article  CAS  Google Scholar 

  8. Lang SM, Bernhardt TM (2009) Cooperative and competitive coadsorption of H2, O2, and N2 on Aux+ (x= 3, 5). J Chem Phys 131(2)

  9. Knickelbein MB (1992) Chem Phys Lett 192:129–134

    Article  CAS  Google Scholar 

  10. Calaminici EP, Köster A, Russo N, Salahub D (1996) J Chem Phys 105:9546–9556

    Article  CAS  Google Scholar 

  11. Katakuse I, Ichihara T, Fujita Y, Matsuo T, Sakurai T, Matsuda H (1985) Int J Mass Spectrom Ion Processes 67:229–236

    Article  CAS  Google Scholar 

  12. Kimble M, Moore N, Castleman A, Bürgel C, Mitrić R, Bonačić-Koutecký V (2007) Eur Phys J D 43:205–208

    Article  CAS  Google Scholar 

  13. Ma J, Cao X, Xing X, Wang X, Parks JH (2016) Phys Chem Chem Phys 18:743–748

    Article  CAS  PubMed  Google Scholar 

  14. Hagen J, Socaciu LD, Le Roux J, Popolan D, Bernhardt TM, Wöste L, Mitrić R, Noack H, Bonačić-Koutecký V (2004) J Am Chem Soc 126:3442–3443

    Article  CAS  PubMed  Google Scholar 

  15. Parks E, Nieman G, Kerns K, Riley S (1998) J Chem Phys 108:3731–3739

    Article  CAS  Google Scholar 

  16. Kim YD, Stolcic D, Fischer M, Ganteför G (2003) J Chem Phys 119:10307–10312

    Article  CAS  Google Scholar 

  17. Commoner B, Townsend J, Pake GE (1954) Nature 174:689–691

    Article  CAS  PubMed  Google Scholar 

  18. Alfadda AA, Sallam RM (20112) Reactive oxygen species in health and disease. Biomed Res Int 2012

  19. Dhawan V (2014) Reactive oxygen and nitrogen species: general considerations. Studies on respiratory disorders. Springer, New York, pp 27–47

  20. Liou G-Y, Storz P (2010) Free Radic Res 44:479–496

    Article  CAS  PubMed  Google Scholar 

  21. Hertog MG, Feskens EJ, Kromhout D, Hollman P, Katan M (1993) Lancet 342:1007–1011

    Article  CAS  PubMed  Google Scholar 

  22. Merry P, Winyard P, Morris C, Grootveld M, Blake D (1989) Ann Rheum Dis 48:864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Commenges D, Scotet V, Renaud S, Jacqmin-Gadda H, Barberger-Gateau P, Dartigues J-F (2000) Eur J Epidemiol 16:357–363

    Article  CAS  PubMed  Google Scholar 

  24. Boots AW, Li H, Schins RP, Duffin R, Heemskerk JW, Bast A, Haenen GR (2007) Toxicol Appl Pharmacol 222:89–96

    Article  CAS  PubMed  Google Scholar 

  25. Saller R, Meier R, Brignoli R (2001) Drugs 61:2035–2063

    Article  CAS  PubMed  Google Scholar 

  26. Gažák R, Marhol P, Purchartová K, Monti D, Biedermann D, Riva S, Cvak L, Křen V (2010) Process Biochem 45:1657–1663

    Article  Google Scholar 

  27. Meister A (1995) Methods Enzymol 251:3–7

    Article  CAS  PubMed  Google Scholar 

  28. Rice-Evans CA, Miller NJ, Paganga G (1996) Free Radic Biol Med 20:933–956

    Article  CAS  PubMed  Google Scholar 

  29. Cos P, Ying L, Calomme M, Hu JP, Cimanga K, Van Poel B, Pieters L, Vlietinck AJ, Berghe DV (1998) J Nat Prod 61:71–76

    Article  CAS  PubMed  Google Scholar 

  30. Francisco-Marquez M, Galano A, Martínez A (2010) J Phys Chem C 114:6363–6370

    Article  CAS  Google Scholar 

  31. Martínez A, Galano A (2010) J Phys Chem C 114:8184–8191

    Article  Google Scholar 

  32. Marković Z, Milenković D, Đorović J, Marković JMD, Stepanić V, Lučić B, Amić D (2012) Food Chem 134:1754–1760

    Article  PubMed  Google Scholar 

  33. Çakmak E, ÖzbakırIşın D (2020) J Mol Model 26:1–11

    Article  Google Scholar 

  34. Boulebd H, Khodja IA (2021) Phytochemistry 189:112831

    Article  CAS  PubMed  Google Scholar 

  35. Sun Y-M, Zhang H-Y, Chen D-Z, Liu C-B (2002) Org Lett 4:2909–2911

    Article  CAS  PubMed  Google Scholar 

  36. Kalaivanan C, Sankarganesh M, Suvaikin MY, Karthi GB, Gurusamy S, Subramanian R, Asha RN (2020) J Mol Liq 320:114423

    Article  CAS  Google Scholar 

  37. Puškárová I, Breza M (2017) Chem Phys Lett 680:78–82

    Article  Google Scholar 

  38. Damena T, Alem MB, Zeleke D, Desalegn T, Eswaramoorthy R, Demissie TB (2022) ACS Omega 7:26336–26352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Andrade E-B, Martínez A (2017) Comput Theor Chem 1115:127–135

    Article  CAS  Google Scholar 

  40. Reina M, Martínez A (2017) Comput Theor Chem 1099:174–184

    Article  CAS  Google Scholar 

  41. Reina M, Martínez A (2017) Comput Theor Chem 1112:1–9

    Article  CAS  Google Scholar 

  42. Reina M, Martínez A (2017) Comput Theor Chem 1120:24–33

    Article  CAS  Google Scholar 

  43. Ahmadi A, Kassaee MZ, Fattahi A (2018) J Phys Org Chem 31:e3776

    Article  Google Scholar 

  44. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  45. Martínez A (2010) J Phys Chem C 114:21240–21246

    Article  Google Scholar 

  46. Jug K, Zimmermann B, Calaminici P, Köster AM (2002) J Chem Phys 116:4497–4507

    Article  CAS  Google Scholar 

  47. Fournier R (2001) J Chem Phys 115:2165–2177

    Article  CAS  Google Scholar 

  48. Rezaee N, Ahmadi A, Kassaee MZ (2016) RSC Adv 6:13224–13233

    Article  CAS  Google Scholar 

  49. Zheng D, Zhang M, Zhao G (2017) Sci Rep 7:1–10

    Article  Google Scholar 

  50. Raghavachari K (2000) Theor Chem Acc 103:361–363

    Article  CAS  Google Scholar 

  51. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  52. Bouchareb F, Berredjem M, Dehmchi DA, Kadri R, Kadri M, Ferkous H, Mansouri A, Bouyegh S, Ahmed SA, Hadda TB (2023) J Mol Struct 1294:136503

    Article  CAS  Google Scholar 

  53. Tedjeuguim CT, Tasheh SN, Alongamo CIL, Ghogomu JN (2022) J Chem Sci 134:70

    Article  Google Scholar 

  54. Kosar N, Ayub K, Gilani MA, Muhammad S, Mahmood T (2022) ACS Omega 7:20800–20808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  56. Wadt WR, Hay PJ (1985) J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  57. Weinhold F, Landis CR (2001) Chem Educ Res Pract 2:91–104

    Article  CAS  Google Scholar 

  58. Weinhold F (2012) J Comput Chem 33:2363–2379

    Article  CAS  PubMed  Google Scholar 

  59. Glendening E, Landis C, Weinhold F (2012) Rev: Comput Mol Sci 2(10):1002

    Google Scholar 

  60. Weinhold F (1997) J Mol Struct: THEOCHEM 398:181–197

    Article  Google Scholar 

  61. Bader RF (1991) Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  62. Lu T, Chen F (2012) J Comput Chem 33:580–592

    Article  PubMed  Google Scholar 

  63. Lu T, Chen F (2012) J Mol Graph Model 38:314–323

    Article  PubMed  Google Scholar 

  64. Scrocco E, Tomasi J (2005) The electrostatic molecular potential as a tool for the interpretation of molecular properties. New concepts II. Springer, Berlin, Heidelberg, pp 95–170

  65. Bader RF, Nguyen-Dang T (1981) In advances in quantum chemistry. Elsevier 14:63–124

    CAS  Google Scholar 

  66. Espinosa E, Alkorta I, Elguero J, Molins E (2002) J Chem Phys 117:5529–5542

    Article  CAS  Google Scholar 

  67. Lu F, Chen Y, Fu B, Chen S, Wang L (2022) Chin Chem Lett 33:5111–5115

    Article  CAS  Google Scholar 

  68. Jacobsen H (2008) Can J Chem 86:695–702

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support from Tarbiat Modares University (TMU) is gratefully acknowledged.

Funding

Tarbiat Modares University.

Author information

Authors and Affiliations

Authors

Contributions

Batoul Alipour wrote the main manuscript text and has done the calculations, Tables, etc. Mohamad Zaman Kassaee is the corresponding author and wrote the main manuscript text.

Corresponding author

Correspondence to Mohamad Zaman Kassaee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alipour, B., Kassaee, M.Z. Comparison of Cu3, Cu5, and Cu7 clusters as potential antioxidants: A theoretical quest. J Mol Model 30, 132 (2024). https://doi.org/10.1007/s00894-024-05933-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-05933-0

Keywords

Navigation