Skip to main content
Log in

Molecular dynamics simulation of the effect of temperature on the conformation of ubiquitin protein

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Content

Ubiquitin, a ubiquitous small protein found in all living organisms, is crucial for tagging proteins earmarked for degradation and holds pivotal importance in biomedicine. Protein functionality is intricately linked to its structure. To comprehend the impact of diverse temperatures on ubiquitin protein structure, our study delved into the energy landscape, hydrogen bonding, and overall structural stability of ubiquitin protein at varying temperatures. Through meticulous analysis of root mean square deviation and root mean square fluctuation, we validated the robustness of the simulation conditions employed. Within our simulated system, the bonding energy and electrostatic potential energy exhibited linear augmentation, while the van der Waals energy demonstrated a linear decline. Additionally, our findings highlighted that the α-Helix secondary structure of the ubiquitin protein gradually transitions toward helix destabilization under high-temperature conditions. The secondary structure of ubiquitin protein experiences distinct changes under varying temperatures. The outcomes of our molecular simulations offer a theoretical framework that enhances our comprehension of how temperature impacts the structural stability of ubiquitin protein. These insights contribute not only to a deeper understanding of iniquity’s behavior but also hold broader implications in the realm of biomedicine and beyond.

Methods

All the MD simulations were performed using the GROMACS software with GROMOS96 force field and SPC for water. The ubiquitin protein was put in the center of a cubic box with a length of 8 nm, a setting that allowed > 0.8 nm in the minimal distance between the protein surface and the box wall. To remove the possible coordinate collision of the configurations, in the beginning, the steepest descent method was used until the maximum force between atoms was under 100 kJ/mol·nm with a 0.01 nm step size. Minimization was followed by 30 ps of position-restrained MD simulation. The protein was restrained to its initial position, and the solvent was freely equilibrated. The product phase was obtained with the whole system simulated for 10 ns without any restraint using an integral time step of 1 fs with different temperatures. The cutoff for short-range electronic interaction was set to 1.5 nm. The long-range interactions were treated with a particle-mesh Ewald (PME) method with a grid width of 1.2 nm.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Dapu L, Xiaoxing Z, Qingliang L, Yunhua X, Guoxia Z, Wenchao Y, Mei N, Wenjing M, Nana D, Jihong L, Yanzhao Y, Qi X, Chengcai C, Hongning T (2022) The U-box ubiquitin ligase TUD1 promotes brassinosteroid-induced GSK2 degradation in rice. Plant Commun 4(2):100450. https://doi.org/10.1016/j.xplc.2022.100450

    Article  CAS  Google Scholar 

  2. Damgaard RB (2021) The ubiquitin system: from cell signalling to disease biology and new therapeutic opportunities. Cell Death Differ 28(2):423–426

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pickart CM, Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Biochimica et Biophysica Acta (BBA) - Mol Cell Res 1695(1):55–72

    Article  CAS  Google Scholar 

  4. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67(1):425–479

    Article  CAS  PubMed  Google Scholar 

  5. Swatek KN, Komander D (2016) Ubiquitin modifications. Cell Res 26(4):399–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ayse OY, Mediha C (2023) The role of ubiquitin signaling pathway on liver regeneration in rats. Mol Cell Biochem 478(1):131–147. https://doi.org/10.1007/s11010-022-04482-5

    Article  CAS  Google Scholar 

  7. Generali E, Bose T, Selmi C, Voncken JW, Damoiseaux JGMC (2018) Nature versus nurture in the spectrum of rheumatic diseases: classification of spondyloarthritis as autoimmune or autoinflammatory. Autoimmun Rev 17(9):935–941

    Article  CAS  PubMed  Google Scholar 

  8. Fraile JM, Quesada V, Rodríguez D, Freije JMP, López-Otín C (2012) Deubiquitinases in cancer: new functions and therapeutic options. Oncogene 31(19):2373–2388

    Article  CAS  PubMed  Google Scholar 

  9. Wintrode PL, Makhatadze GI, Privalov PL (1994) Thermodynamics of ubiquitin unfolding. Proteins: Struct Funct Bioinforma 18(3):246–253

    Article  CAS  Google Scholar 

  10. Sahoo AK, Bagchi B, Maiti PK (2019) Unfolding dynamics of ubiquitin from constant force md simulation: entropy–enthalpy interplay shapes the free-energy landscape. J Phys Chem B 123(6):1228–1236

    Article  CAS  PubMed  Google Scholar 

  11. Bo T, Jingwei Z, Wen W, Haibo M, Yuanyuan Y (2022) Tumor-suppressive E3 ubiquitin ligase CHIP inhibits the PBK/ERK axis to repress stem cell properties and radioresistance in non-small cell lung cancer. Apoptosis: an Int Journal Programmed Cell Death 28 (3–4)

  12. DongHyuk L, Gitta C (2023) Purification and detection of ubiquitinated plant proteins using tandem ubiquitin binding entities. Methods Mol Biol (Clifton, N.J.) 2581:245–254. https://doi.org/10.1007/978-1-0716-2784-6_17

    Article  CAS  Google Scholar 

  13. Hoffman F, Mulder FA, Schäfer LV (2020) Predicting NMR relaxation of proteins from molecular dynamics simulations with accurate methyl rotation barriers. J Chem Phys 152(8):084102. https://doi.org/10.1063/1.5135379

    Article  CAS  Google Scholar 

  14. Ridgeway ME, Silviera JA, Meier JE, Park MA (2015) Microheterogeneity within conformational states of ubiquitin revealed by high resolution trapped ion mobility spectrometry. Analyst 140(20):6964–6972. https://doi.org/10.1039/C5AN00841G

    Article  CAS  PubMed  Google Scholar 

  15. Kony DB, Hünenberger PH, van Gunsteren WF (2007) Molecular dynamics simulations of the native and partially folded states of ubiquitin: influence of methanol cosolvent, pH, and temperature on the protein structure and dynamics. Protein Sci 16(6):1101–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hofmann GE, Somero GN (1995) Evidence for protein damage at environmental temperatures: seasonal changes in levels of ubiquitin conjugates and Hsp70 in the intertidal mussel Mytilus trossulus. J Exp Biol 198(7):1509–1518

    Article  CAS  PubMed  Google Scholar 

  17. Herberhold H, Winter R (2002) Temperature- and pressure-induced unfolding and refolding of ubiquitin: a static and kinetic Fourier transform infrared spectroscopy study. Biochemistry 41(7):2396–2401

    Article  CAS  PubMed  Google Scholar 

  18. Hui M, Chang L, Hao O, Peiwen Z, Yuping L, Chen Z, Changping D, Yunhui F, Jinping N, Wenyun Z, Fang Y, Yi Y, Xingyuan M (2023) A nanobody-based molecular toolkit for ubiquitin–proteasome system explores the main role of survivin subcellular localization. Front Bioeng Biotechnol 10:952237. https://doi.org/10.3389/fbioe.2022.952237

    Article  Google Scholar 

  19. Valles GJ, Jaiswal N, Korzhnev DM, Bezsonova I (2023) Activation dynamics of ubiquitin specific protease 7. bioRxiv: the preprint server for biology. https://doi.org/10.1101/2023.01.11.523550

    Book  Google Scholar 

  20. Wittorf KJ, Weber KK, Swenson SA, Buckley SM (2022) Ubiquitin E3 ligase FBXO21 regulates cytokine-mediated signaling pathways, but is dispensable for steady-state hematopoiesis. Exp Hematol 114:33–42. https://doi.org/10.1016/j.exphem.2022.08.002

    Article  CAS  PubMed  Google Scholar 

  21. Keito H, Akira N, Kenji T, Kazuhiro I, Minsoo K, Tsunehiro M (2023) Structural insight into the recognition of the linear ubiquitin assembly complex by Shigella E3 ligase IpaH1.4/2.5. J Biochem 173(4):317–326. https://doi.org/10.1093/jb/mvac109

    Article  CAS  Google Scholar 

  22. Nadel CM, Gestwicki JE (2022) Intersecting PTMS regulate clearance of pathogenic tau by the CHIP ubiquitin ligase. Alzheimer’s Dement 18(Suppl. 3):e062036. https://doi.org/10.1002/alz.062036

    Article  Google Scholar 

  23. Ryota H, Reika K, Kenichiro I, Waka K, Tatsuya Y, Miho I, Hiromi S, Keiji T, Noriyuki M, Koji Y (2022) Elucidation of ubiquitinconjugating enzymes that interact with RBR-type ubiquitin ligases using a liquid-liquid phase separation-based method. J Biol Chem 299(2):102822. https://doi.org/10.1016/j.jbc.2022.102822

    Article  CAS  Google Scholar 

  24. Bhardwaj VK, Purohit R (2020) A new insight into protein-protein interactions and the effect of conformational alterations in PCNA. Int J Biol Macromol 148:999–1009

    Article  CAS  PubMed  Google Scholar 

  25. Bhardwaj V, Purohit R (2020) Computational investigation on effect of mutations in PCNA resulting in structural perturbations and inhibition of mismatch repair pathway. J Biomol Struct Dyn 38(7):1963–1974

    Article  CAS  PubMed  Google Scholar 

  26. Rajasekaran R, George Priya Doss C, Sudandiradoss C, Ramanathan K, Purohit R, Sethumadhavan R (2008) Effect of deleterious nsSNP on the HER2 receptor based on stability and binding affinity with herceptin: a computational approach. Comptes Rendus Biologies 331(6):409–417

    Article  CAS  PubMed  Google Scholar 

  27. Singh R, Bhardwaj V, Purohit R (2021) Identification of a novel binding mechanism of quinoline based molecules with lactate dehydrogenase of Plasmodium falciparum. J Biomol Struct Dyn 39(1):348–356

    Article  CAS  PubMed  Google Scholar 

  28. Kamaraj B, Purohit R (2016) Mutational analysis on membrane associated transporter protein (MATP) and their structural consequences in oculocutaeous albinism type 4 (OCA4)-a molecular dynamics approach. J Cell Biochem 117(11):2608–2619

    Article  CAS  PubMed  Google Scholar 

  29. Kumar S, Sinha K, Sharma R, Purohit R, Padwad Y (2019) Phloretin and phloridzin improve insulin sensitivity and enhance glucose uptake by subverting PPARγ/Cdk5 interaction in differentiated adipocytes. Exp Cell Res 383(1):111480

    Article  CAS  PubMed  Google Scholar 

  30. Vijay-Kumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8Åresolution. J Mol Biol 194(3):531–544

    Article  CAS  PubMed  Google Scholar 

  31. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual Molecular Dynamics. J Mol Graph 14(1):33–38

    Article  CAS  PubMed  Google Scholar 

  32. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447

    Article  CAS  PubMed  Google Scholar 

  33. Schuler LD, Daura X, van Gunsteren WF (2001) An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Comput Chem 22(11):1205–1218

    Article  CAS  Google Scholar 

  34. Daura X, Mark AE, Van Gunsteren WF (1998) Parametrization of aliphatic CHn united atoms of GROMOS96 force field. J Comput Chem 19(5):535–547

    Article  CAS  Google Scholar 

  35. Jafari M, Mehrnejad F, Rahimi F, Asghari SM (2018) The molecular basis of the sodium dodecyl sulfate effect on human ubiquitin structure: a molecular dynamics simulation study. Sci Rep 8(1):2150

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kawata M, Nagashima U (2001) Particle mesh Ewald method for three-dimensional systems with two-dimensional periodicity. Chem Phys Lett 340(1):165–172

    Article  CAS  Google Scholar 

  37. Sushmita D, Krishna P, Ashish K, Sardar AH, Bidyut P, Manish K, Kumar S, Ravidas VN, Syamal R, Dharmendra S, Pradeep D (2022) TGF-β1 re-programs TLR4 signaling in L donovani infection: enhancement of SHP-1 and ubiquitin-editing enzyme A20. Immunol Cell Biol 90(6):640–654. https://doi.org/10.1038/icb.2011.80

    Article  CAS  Google Scholar 

  38. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695–1697

    Article  CAS  Google Scholar 

  39. Nosé S, Klein M (1983) Constant pressure molecular dynamics for molecular systems. Mol Phys 50(5):1055–1076

    Article  Google Scholar 

  40. Purohit R (2014) Role of ELA region in auto-activation of mutant KIT receptor: a molecular dynamics simulation insight. J Biomol Struct Dyn 32(7):1033–1046

    Article  CAS  PubMed  Google Scholar 

  41. Yujing R, Beiming Y, Lihui Z, Feng W, Yanfeng W (2022) Structural insights into the phosphorylation-enhanced deubiquitinating activity of UCHL3 and ubiquitin chain cleavage preference analysis. Int J Mol Sci 23 (18)

  42. Suryanarayanan V, Singh SK (2018) Unravelling novel congeners from acetyllysine mimicking ligand targeting a lysine acetyltransferase PCAF bromodomain. J Biomol Struct Dyn 36(16):4303–4319

    Article  CAS  PubMed  Google Scholar 

  43. Yixuan S, Yanru H, Lihua C, Jianmin W (2023) Deep-learning based approach to identify substrates of human E3 ubiquitin ligases and deubiquitinases. Comput Struct Biotechnol J 21:1014–1021. https://doi.org/10.1016/j.csbj.2023.01.021

    Article  CAS  Google Scholar 

  44. Lu T, Tan H, Lee D, Chen G, Jia Z (2009) New insights into the activation of Escherichia coli tyrosine kinase revealed by molecular dynamics simulation and biochemical analysis. Biochemistry 48(33):7986–7995

    Article  CAS  PubMed  Google Scholar 

  45. Lu T, Liu Z, Chen Q (2021) Comment on “18 and 12–member carbon rings (cyclo [n] carbons)–a density functional study.” Mater Sci Eng, B 273:115425

    Article  CAS  Google Scholar 

  46. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  PubMed  Google Scholar 

  47. Penner RC, Andersen ES, Jensen JL, Kantcheva AK, Bublitz M, Nissen P, Rasmussen AMH, Svane KL, Hammer B, Rezazadegan R, Nielsen NC, Nielsen JT, Andersen JE (2014) Hydrogen bond rotations as a uniform structural tool for analyzing protein architecture. Nat Commun 5(1):5803

    Article  CAS  PubMed  Google Scholar 

  48. Luzar A, Chandler D (1996) Hydrogen-bond kinetics in liquid water. Nature 379(6560):55–57

    Article  CAS  Google Scholar 

  49. Ling W, Xue Z, Yujin T, Ting Z, Congbo H, Yan L, Chaohong Z (2023) Exocyst subunit VviExo70B is degraded by ubiquitin ligase VviPUB19 and they regulate drought and salt tolerance in grapevine. Environ Exp Botany 206:105175. https://doi.org/10.1016/j.envexpbot.2022.105175

    Article  CAS  Google Scholar 

  50. Voloshin VP, Naberukhin YI (2009) Hydrogen bond lifetime distributions in computer-simulated water. J Struct Chem 50(1):78–89

    Article  CAS  Google Scholar 

  51. Petrenko VE, Antipova ML (2009) The mean lifetimes of H-bonds in water supercritical states. Russ J Phys Chem A 83(13):2243–2248

    Article  CAS  Google Scholar 

  52. Xiaohong W, Hairui X, Chuang Z, Xianhong G, Yue H (2022) GRP94 inhabits the immortalized porcine hepatic stellate cells apoptosis under endoplasmic reticulum stress through modulating the expression of IGF-1 and ubiquitin. Int J Mol Sci 23(22):14059. https://doi.org/10.3390/ijms232214059

    Article  CAS  Google Scholar 

  53. Young YS, Myungjin L, SukYoon K, Taek KW, Pyo LY, SiYong K (2022) RING-type E3 ubiquitin ligases AtRDUF1 and AtRDUF2 positively regulate the expression of PR1 gene and pattern-triggered immunity. Int J Mol Sci 23(23):14525. https://doi.org/10.3390/ijms232314525

    Article  CAS  Google Scholar 

  54. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12):2577–2637

    Article  CAS  PubMed  Google Scholar 

  55. Zacharias J, Knapp E-W (2014) Protein secondary structure classification revisited: processing DSSP information with PSSC. J Chem Inf Model 54(7):2166–2179

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the Joint Funds of Zhejiang Provincial Natural Science Foundation of China under Grant No. LZY24B030001, Lab Open Project (No. KFXM202204) funded by Zhaoyang Ju, and Zhaoyang Ju project of Student Innovation and Entrepreneurship Training Program (No. Q23X001), Yihang Yu project of the Research Fund for the Program of “Xinmiao” (Potential) Talents in Zhejiang Province (No. 2022R435A002). The work was carried out at the Shanxi Supercomputing Center of China, and the calculations were performed on TianHe-2.

Author information

Authors and Affiliations

Authors

Contributions

Junpeng Hu: drafted the manuscript and performed the data analysis. Shanshan Song: collected the data. MengtingYu: reviewed the manuscript. Yihang Yu: verified the analytical methods. Zhaoyang Ju: reviewed the manuscript and designed the study. Yufen Wang: reviewed the manuscript. Xiaoyong Cao: reviewed the manuscript.

Corresponding authors

Correspondence to Zhaoyang Ju or Xiaoyong Cao.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1015 KB)

Supplementary file2 (GIF 1713 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Song, S., Yu, M. et al. Molecular dynamics simulation of the effect of temperature on the conformation of ubiquitin protein. J Mol Model 30, 134 (2024). https://doi.org/10.1007/s00894-024-05928-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-05928-x

Keywords

Navigation