Skip to main content
Log in

The surface chemistry of norbornadiene and norbornene on Pd(111) and Pd(100): a comparative DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

The interaction of norbornadiene (NBD) and norbornene (NBE) with the palladium (111) and (100) surfaces have been investigated using density functional theory (DFT). Five configurations of adsorbed NBD may be formed on Pd(111): endo-tetra-σ, endo-di-σ,π, endo-di-π, exo-di-σ, and exo-π. The NBE molecule adsorbed on Pd(111) may exist in 4 configurations: endo-di-σ, endo-π, exo-di-σ, and exo-π. On Pd(100), a smaller number adsorption configurations of NBD and NBE are formed, since the double bonds of these molecules in the endo-orientation are bound only in a di-σ mode. The adsorption energy of NBD and NBE molecules on Pd(100) is noticeably higher compared to Pd(111), which is due to the surface geometry of Pd(100). The most stable configurations on both Pd facets are endo-tetra-σ for NBD and exo-di-σ for NBE. However, due to smaller adsorption area of the exo-di-σ configuration on Pd(111), a larger number of NBD molecules may adsorbed on the same surface area. Energetically favorable endo-tetra-σ (NBD) and exo-di-σ (NBE) configurations are very mobile on Pd(111). On Pd(100), only NBE molecules can migrate, while NBD migration is hindered due to the high activation barrier.

Methods

All DFT calculations were performed using the Perdew-Burke-Ernzerhof density functional (PBE) with the relativistic SBK effective core potential and TZ2P basis set in the PRIRODA program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Dzhemilev UM, Khusnutdinov RI, Tolstikov GA (1987) Norbornadienes in the Synthesis of Polycyclic Strained Hydrocarbons with Participation of Metal Complex Catalysts. Russ Chem Rev 56:36–51. https://doi.org/10.1070/RC1987v056n01ABEH003255

    Article  Google Scholar 

  2. Durakov SA, Kolobov AA, Flid VR (2022) Features of heterogeneous catalytic transformations of strained carbocyclic compounds of the norbornene series. Fine Chem Technol 17(4):275–297. https://doi.org/10.32362/2410-6593-2022-17-4-275-297

    Article  CAS  Google Scholar 

  3. Finkelshtein ESh, Bermeshev MV, Gringolts ML, Starannikova LE, Yampolskii YuP (2011) Substituted polynorbornenes as promising materials for gas separation membranes. Russ Chem Rev 80:341–362. https://doi.org/10.1070/RC2011v080n04ABEH004203

    Article  CAS  Google Scholar 

  4. Yalçınkaya EE, Balcan M, Güler Ç (2013) Synthesis, characterization and dielectric properties of polynorbornadiene – clay nanocomposites by ROMP using intercalated Ruthenium catalyst. Mater Chem Phys 143:380–386. https://doi.org/10.1016/j.matchemphys.2013.09.014

    Article  CAS  Google Scholar 

  5. Ono Y, Kawashima N, Kudo H, Nishikubo T, Naga T (2005) Synthesis of new photoresponsive polyesters containing norbornadiene moieties by the ring-opening copolymerization of donor–acceptor norbornadiene dicarboxylic acid anhydride with donor–acceptor norbornadiene dicarboxylic acid monoglycidyl ester derivatives. J Polym Sci Polym Chem 43:4412–4421. https://doi.org/10.1016/10.1002/pola.20911

    Article  CAS  Google Scholar 

  6. Tsubata A, Uchiyama T, Kameyama A, Nishikubo T (1997) Synthesis of Poly(esteramide)s Containing Norbornadiene (NBD) Residues by the Polyaddition of NBD Dicarboxylic Acid Derivatives with Bis(epoxide)s and Their Photochemical Properties. Macromolecules 30:5649–5654. https://doi.org/10.1021/ma970431a

    Article  CAS  Google Scholar 

  7. Alentiev DA, Nikiforov RYu, Rudakova MA, Zarezin DP, Topchiy MA, Asachenko AF, Alentiev AYu, Bolshchikov BD, Belov NA, Finkelshtein ESh, Bermeshev MV (2022) Polynorbornenes bearing ether fragments in substituents: Promising membrane materials with enhanced CO2 permeability. J Membrane Sci 648:120340. https://doi.org/10.1016/j.memsci.2022.120340

    Article  CAS  Google Scholar 

  8. Bermeshev MV, Chapala PP (2018) Addition polymerization of functionalized norbornenes as a powerful tool for assembling molecular moieties of new polymers with versatile properties. Prog Polym Sci 84:1–46. https://doi.org/10.1016/j.progpolymsci.2018.06.003

    Article  CAS  Google Scholar 

  9. Fiorino F, Perissutti E, Severino B, Santagada V, Cirillo D, Terracciano S, Massarelli P, Bruni G, Collavoli E, Renner C, Caliendo G (2005) New 5-Hydroxytryptamine1A Receptor Ligands Containing a Norbornene Nucleus: Synthesis and in Vitro Pharmacological Evaluation. J Med Chem 48:5495–5503. https://doi.org/10.1021/jm050246k

    Article  CAS  PubMed  Google Scholar 

  10. Hajiyeva GE (2021) Biologically Active Norbornene Derivatives: Synthesis of Bicyclo[221]heptene Mannich Bases. Chem Sustain Dev 29(4):391–410. https://doi.org/10.15372/CSD2021317

    Article  Google Scholar 

  11. Carroll FI, Brieaddy LE, Navarro HA, Damaj MI, Martin BR (2005) Synthesis and Pharmacological Characterization of exo-2-(2’-Chloro-5-pyridinyl)-7-(endo and exo)-aminobicyclo[2.2.1]heptanes as Novel Epibatidine Analogues. J Med Chem 48:7491–7495. https://doi.org/10.1021/jm058243v

    Article  CAS  PubMed  Google Scholar 

  12. Calvo-Martín G, Plano D, Martínez-Sáez N, Aydillo C, Moreno E, Espuelas S, Sanmartín C (2022) Norbornene and Related Structures as Scaffolds in the Search for New Cancer Treatments. Pharmaceuticals 15:1465. https://doi.org/10.3390/ph15121465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gusevskaya EV, Jiménez-Pinto J, Börner A (2014) Hydroformylation in the Realm of Scents. ChemCatChem 6:382–411. https://doi.org/10.1002/cctc.201300474

    Article  CAS  Google Scholar 

  14. Buchbauer G, Stappen I, Pretterklieber C, Wolschann P (2004) Structure–activity relationships of sandalwood odorants: synthesis and odor of tricyclo β-santalol. Eur J Med Chem 39:1039–1046. https://doi.org/10.1016/j.ejmech.2004.09.014

    Article  CAS  PubMed  Google Scholar 

  15. Kudo H, Yamamoto M, Nishikubo T, Moriya O (2006) Novel Materials for Large Change in Refractive Index: Synthesis and Photochemical Reaction of the Ladderlike Poly(silsesquioxane) Containing Norbornadiene, Azobenzene, and Anthracene Groups in the Side Chains. Macromolecules 39:1759–1765. https://doi.org/10.1021/ma052147m

    Article  CAS  Google Scholar 

  16. Kato Y, Muta H, Takahashi S, Horie K, Nagai T (2001) Large Photoinduced Refractive Index Change of Polymer Films Containing and Bearing Norbornadiene Groups and Its Application to Submicron-Scale Refractive-Index Patterning. Polym J 33:868–873. https://doi.org/10.1295/polymj.33.868

    Article  CAS  Google Scholar 

  17. Dubonosov AD, Bren VA, Chernoivanov VA (2002) Norbornadiene–quadricyclane as an abiotic system for the storage of solar energy. Russ Chem Rev 71:917–927. https://doi.org/10.1070/RC2002v071n11ABEH000745

    Article  CAS  Google Scholar 

  18. Gray V, Lennartson A, Ratanalert P, Börjessonab K, Moth-Poulsen K (2014) Diaryl-substituted norbornadienes with red-shifted absorption for molecular solar thermal energy storage. Chem Commun 50:5330–5332. https://doi.org/10.1039/C3CC47517D

    Article  CAS  Google Scholar 

  19. Mansø M, Petersen AU, Wang Z, Erhart P, Nielsen MB, Moth-Poulsen K (2018) Molecular solar thermal energy storage in photoswitch oligomers increases energy densities and storage times. Nat Commun 9:1945. https://doi.org/10.1038/s41467-018-04230-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jevric M, Petersen AU, Mansø M, Singh SK, Wang Z, Dreos A, Sumby C, Nielsen MB, Börjesson K, Erhart P, Moth-Poulsen K (2018) Norbornadiene-Based Photoswitches with Exceptional Combination of Solar Spectrum Match and Long-Term Energy Storage. Chem Eur J 24:12767–12772. https://doi.org/10.1002/chem.201802932

    Article  CAS  PubMed  Google Scholar 

  21. Dreos A, Wang Z, Udmark J, Ström A, Erhart P, Börjesson K (2018) Liquid Norbornadiene Photoswitches for Solar Energy Storage. Adv Energy Mater 8:1703401. https://doi.org/10.1002/aenm.201703401

    Article  CAS  Google Scholar 

  22. Catellani M, Frignani F, Rangoni A (1997) A Complex Catalytic Cycle Leading to a Regioselective Synthesis of o, o′-Disubstituted Vinylarenes. Angew Chem Int Ed Engl 36:119–122. https://doi.org/10.1002/anie.199701191

    Article  CAS  Google Scholar 

  23. Ye J, Lautens M (2015) Palladium-catalysed norbornene-mediated C-H functionalization of arenes. Nature Chem 7:863–870. https://doi.org/10.1038/nchem.2372

    Article  CAS  Google Scholar 

  24. Wang J, Dong G (2019) Palladium/Norbornene Cooperative Catalysis. Chem Rev 119:7478–7528. https://doi.org/10.1021/acs.chemrev.9b00079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Khoury PR, Goddard JD, Tam W (2004) Ring strain energies: substituted rings, norbornanes, norbornenes and norbornadienes. Tetrahedron 60:8103–8112. https://doi.org/10.1016/j.tet.2004.06.100

    Article  CAS  Google Scholar 

  26. Knuchel G, Grassi G, Vogelsanger B, Bauder A (1993) Molecular structure of norbornadiene as determined by microwave Fourier transform spectroscopy. J Am Chem Soc 115:10845–10848. https://doi.org/10.1021/ja00076a047

    Article  CAS  Google Scholar 

  27. Brunelli M, Fitch AN, Jouanneaux A, Mora AJ (2001) Crystal and molecular structures of norbornene. Zeitschrift für Kristallographie-Crystalline Mater 216:51–55

    Article  CAS  Google Scholar 

  28. Zamalyutin VV, Katsman EA, Danyushevsky VY, Flid VR, Podol’skii VV, Ryabov AV (2021) Specific Features of the Catalytic Hydrogenation of the Norbornadiene-Based Carbocyclic Compounds. Russ J Coord Chem 47:695–701. https://doi.org/10.1134/S1070328421100080

    Article  CAS  Google Scholar 

  29. Borodziński A, Bond GC (2006) Selective Hydrogenation of Ethyne in Ethene-Rich Streams on Palladium Catalysts. Part 1. Effect of Changes to the Catalyst During Reaction. Catal Rev 48:91–144. https://doi.org/10.1080/01614940500364909

    Article  CAS  Google Scholar 

  30. Rassolov AV, Bragina GO, Baeva GN, Mashkovsky IS, Stakheev AYu (2020) Alumina-Supported Palladium-Silver Bimetallic Catalysts with Single-Atom Pd1 Sites in the Liquid-Phase Hydrogenation of Substituted Alkynes. Kinet Catal 61:869–878. https://doi.org/10.1134/S0023158420060129

    Article  CAS  Google Scholar 

  31. Katano S, Kato HS, Kawai M, Domen K (2003) Selective Partial Hydrogenation of 1,3-Butadiene to Butene on Pd(110): Specification of Reactant Adsorption States and Product Stability. J Phys Chem B 107:3671–3674. https://doi.org/10.1021/jp022410a

    Article  CAS  Google Scholar 

  32. Méndez FJ, Solano R, Villasana Y, Guerra J, Curbelo S, Inojosa M, Olivera-Fuentes C, Brito JL (2016) Selective hydrogenation of 1,3-butadiene in presence of 1-butene under liquid phase conditions with NiPd/Al2O3 catalysts. Appl Petrochem Res 6:379–387. https://doi.org/10.1007/s13203-016-0149-y

    Article  CAS  Google Scholar 

  33. Schmidt A, Schomäcker R (2007) Kinetics of 1,5-Cyclooctadiene Hydrogenation on Pd/α-Al2O3. Ind Eng Chem Res 46:1677–1681. https://doi.org/10.1021/ie0611958

    Article  CAS  Google Scholar 

  34. Benaissa M, Alhanash AM, Eissa M, Hamdy MS (2017) Solvent-free selective hydrogenation of 1,5-cyclooctadiene catalyzed by palladium incorporated TUD-1. Catal Commun 101:62–65. https://doi.org/10.1016/j.catcom.2017.07.026

    Article  CAS  Google Scholar 

  35. Zhao Z, Wang Y (2020) Thermoregulated Phase-Transfer Pd Nanocatalyst for Selective Hydrogenation of 1,5-Cyclooctadiene at Atmospheric Hydrogen Pressure. Catal Lett 150:2703–2708. https://doi.org/10.1007/s10562-020-03174-3

    Article  CAS  Google Scholar 

  36. Krier JM, Komvopoulos K, Somorjai GA (2016) Cyclohexene and 1,4-Cyclohexadiene Hydrogenation Occur through Mutually Exclusive Intermediate Pathways on Platinum Nanoparticles. J Phys Chem C 120:8246–8250. https://doi.org/10.1021/acs.jpcc.6b01615

    Article  CAS  Google Scholar 

  37. Qi S, Yu W, Lonergan WW, Yang B, Chen JG (2010) General Trends in the Partial and Complete Hydrogenation of 1,4-Cyclohexadiene over Pt–Co, Pt–Ni and Pt–Cu Bimetallic Catalysts. ChemCatChem 2:625–628. https://doi.org/10.1002/cctc.201000082

    Article  CAS  Google Scholar 

  38. Zhao X, Chang Y, Chen W-J, Wu Q, Pan X, Chen K, Weng B (2022) Recent Progress in Pd-Based Nanocatalysts for Selective Hydrogenation. ACS Omega 7:17–31. https://doi.org/10.1021/acsomega.1c06244

    Article  CAS  PubMed  Google Scholar 

  39. Bauer U, Fromm L, Weiß C, Bachmann P, Späth F, Düll F, Steinhauer J, Hieringer W, Görling A, Hirsch A, Steinrück H-P, Papp C (2019) Controlled Catalytic Energy Release of the Norbornadiene/Quadricyclane Molecular Solar Thermal Energy Storage System on Ni(111). J Phys Chem C 123:7654–7664. https://doi.org/10.1021/acs.jpcc.8b03746

    Article  CAS  Google Scholar 

  40. Hemauer F, Bauer U, Fromm L, Weiß C, Leng A, Bachmann P, Düll F, Steinhauer J, Schwaab V, Grzonka R, Hirsch A, Görling A, Steinrück H-P, Papp C (2022) Surface Chemistry of the Molecular Solar Thermal Energy Storage System 2,3-Dicyano-Norbornadiene/Quadricyclane on Ni(111). ChemCatChem 23:e202200199. https://doi.org/10.1002/cphc.202200199

    Article  CAS  Google Scholar 

  41. Hostetler M, Nuzzo R, Girolami G, Dubois L (1995) Norbornadiene on Pt(111) Is Not Bound as an η2:η2 Diene: Characterization of an Unexpected η2:η1 Bonding Mode Involving an Agostic Pt-H-C Interaction. Organometallics 14:3377–3384. https://doi.org/10.1021/om00007a044

    Article  CAS  Google Scholar 

  42. Bauer U, Mohr S, Döpper T, Bachmann P, Späth F, Düll F, Schwarz M, Brummel O, Fromm L, Pinkert U, Görling A, Hirsch A, Bachmann J, Steinrück H-P, Libuda J, Papp C (2017) Catalytically Triggered Energy Release from Strained Organic Molecules: The Surface Chemistry of Quadricyclane and Norbornadiene on Pt(111). Chem Eur J 23:1613–1622. https://doi.org/10.1002/chem.201604443

    Article  CAS  PubMed  Google Scholar 

  43. Bilić A, Reimers JR, Hush NS (2003) Modeling the adsorption of norbornadiene on the Si(001) surface: The predominance of non-[2+2]-cycloaddition products. J Chem Phys 119:1115–1126. https://doi.org/10.1063/1.1577539

    Article  CAS  Google Scholar 

  44. Kim A, Choi J, Kim DH, Kim S (2009) Structural Properties of Norbornene Monolayers on Ge(100). J Phys Chem C 113:14311–14315. https://doi.org/10.1021/jp901360g

    Article  CAS  Google Scholar 

  45. Laikov DN (1997) Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets. Chem Phys Lett 281:151–156. https://doi.org/10.1016/S0009-2614(97)01206-2

    Article  CAS  Google Scholar 

  46. Laikov DN, Ustynyuk YuA (2005) PRIRODA-04: A quantum-chemical program suite. New possibilities in the study of molecular systems with the application of parallel computing. Russ Chem Bull 54:820–826. https://doi.org/10.1007/s11172-005-0329-x

    Article  CAS  Google Scholar 

  47. Perdew JP, Burke K, Ernzerhof M (1996) Generalized Gradient Approximation Made Simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  48. Stevens WJ, Basch H, Krauss M (1984) Compact effective potentials and efficient shared exponent basis sets for the first and second row atoms. J Chem Phys 81:6026–6033. https://doi.org/10.1063/1.447604

    Article  Google Scholar 

  49. Shamsiev RS, Danilov FO (2017) Quantum chemical study of H2 adsorption on Pd21 cluster. Russ Chem Bull 66:395–400. https://doi.org/10.1007/s11172-017-1746-3

    Article  CAS  Google Scholar 

  50. Laikov DN (2019) Atomic basis functions for molecular electronic structure calculations. Theor Chem Acc 138:40. https://doi.org/10.1007/s00214-019-2432-3

    Article  CAS  Google Scholar 

  51. Laikov DN (2020) Optimization of atomic density-fitting basis functions for molecular two-electron integral approximations. J Chem Phys 153:114121. https://doi.org/10.1063/5.0014639

    Article  CAS  PubMed  Google Scholar 

  52. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys 110:6158–6170. https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

  53. Moskaleva LV, Chen Z-X, Aleksandrov HA, Mohammed AB, Sun Q, Rösch N (2009) Ethylene Conversion to Ethylidyne over Pd(111): Revisiting the Mechanism with First-Principles Calculations. J Phys Chem C 113:2512–2520. https://doi.org/10.1021/jp8082562

    Article  CAS  Google Scholar 

  54. Chen Z-X, Aleksandrov HA, Basaran D, Rösch N (2010) Transformations of Ethylene on the Pd(111) Surface: A Density Functional Study. J Phys Chem C 114:17683–17692. https://doi.org/10.1021/jp104949w

    Article  CAS  Google Scholar 

  55. Yang B, Burch R, Hardacre C, Headdock G, Hu P (2013) Influence of surface structures, subsurface carbon and hydrogen, and surface alloying on the activity and selectivity of acetylene hydrogenation on Pd surfaces: A density functional theory study. J Catal 305:264–276. https://doi.org/10.1016/j.jcat.2013.05.027

    Article  CAS  Google Scholar 

  56. Shamsiev RS, Finkelshtein EI (2018) Adsorption of phenylacetylene and styrene on palladium surface: a DFT study. J Mol Model 24:143. https://doi.org/10.1007/s00894-018-3685-9

    Article  CAS  PubMed  Google Scholar 

  57. Benet-Buchholz J, Haumann T, Boese R (1998) How to circumvent plastic phases: the single crystal X-ray analysis of norbornadiene. Chem Commun 18:2003–2004. https://doi.org/10.1039/A804842H

    Article  Google Scholar 

  58. Doms L, Van den Enden L, Geise HJ, Van Alsenoy C (1983) Structure determination of gaseous norbornane by electron diffraction, microwave, Raman, and infrared spectroscopy. Molecular mechanics and ab initio calculations with complete geometry relaxation. J Am Chem Soc 105:158–162. https://doi.org/10.1021/ja00340a002

    Article  CAS  Google Scholar 

  59. Mackenzie-Ross H, Brunger MJ, Wang F, Adcock W, Maddern T, Campbell L, Newell WR, McCarthy IE, Weigold E, Appelbe B, Winkler DA (2002) Comprehensive Experimental and Theoretical Study into the Complete Valence Electronic Structure of Norbornadiene. J Phys Chem A 106:9573–9581. https://doi.org/10.1021/jp021338d

    Article  CAS  Google Scholar 

  60. Brookhart M, Green MLH, Parkin G (2007) Agostic interactions in transition metal compounds. Proc Natl Acad Sci 104:6908–6914. https://doi.org/10.1073/pnas.0610747104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Morin C, Simon D, Sautet P (2006) Intermediates in the hydrogenation of benzene to cyclohexene on Pt(111) and Pd(111): A comparison from DFT calculations. Surf Sci 600:1339–1350. https://doi.org/10.1016/j.susc.2006.01.033

    Article  CAS  Google Scholar 

  62. Lee TR, Whitesides GM (1992) Heterogeneous, platinum-catalyzed hydrogenations of (diolefin)dialkylplatinum(II) complexes. Acc Chem Res 25:266–272. https://doi.org/10.1021/ar00018a004

    Article  CAS  Google Scholar 

  63. Shamsiev RS, Danilov FO, Flid VR (2018) Quantum chemical analysis of mechanisms of phenylacetylene and styrene hydrogenation to ethylbenzene on the Pd{111} surface. Russ Chem Bull 67:419–424. https://doi.org/10.1007/s11172-018-2088-5

    Article  CAS  Google Scholar 

  64. Shamsiev RS, Danilov FO (2018) DFT Modeling of mechanism of hydrogenation of phenylacetylene into styrene on a Pd(111) surface. Kinet Catal 59:333–338. https://doi.org/10.1134/S0023158418030187

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Author would like to thank Artem Shamsiev for his help in translating this paper. Calculations were carried out on computational facilities at the Joint Supercomputer Center of the Russian Academy of Sciences.

Funding

The work was financially supported by the Russian Science Foundation (Project No. 23–73-00123).

Author information

Authors and Affiliations

Authors

Contributions

Study conception, modeling, calculations, analysis, and manuscript preparation.

Corresponding author

Correspondence to Ravshan S. Shamsiev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 785 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsiev, R.S. The surface chemistry of norbornadiene and norbornene on Pd(111) and Pd(100): a comparative DFT study. J Mol Model 29, 342 (2023). https://doi.org/10.1007/s00894-023-05738-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05738-7

Keywords

Navigation