Skip to main content
Log in

Density functional theory studies on properties of cluster ConMoS (n=1 ~ 5): interatomic interactions, electronic properties, frontier orbitals

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

To comprehend the microscopic property alterations within the ConMoS cluster (n=1–5), this study investigates its internal interactions, electronic characteristics, and orbital correlations employing density functional theory. Structural optimization and theoretical analysis of the cluster are conducted using the Gaussian09 software package, considering various spin multiplicities and employing the B3LYP/def2tzvp quantum chemical method as the computational standard. The outcomes reveal the optimization of the cluster, resulting in 21 stable configurations while continually acquiring energy from the external environment. Analysis of the interaction region indicator functions, the independent gradient model based on Hirshfeld partition, the localized orbital indicator functions, and the electron localization function reveals a trend toward chemical bonding interactions within the interatomic interaction regions. Moreover, the interatomic forces exhibit a high likelihood of engaging in covalent bonding interactions. Both Co and Mo atoms display greater electron delocalization, facilitating the exchange of electrons with the external environment. The paper discuss electron space range, hardness and softness, polarizability, dipole moment, Mulliken population analysis, density of states, HOMO-LUMO diagram, and UV-Vis spectra. Configuration 5a exhibits the broadest electron delocalization and the highest reactivity. It maintains structural stability in external conditions and displays the most polarized molecules. Metal atoms in this cluster exhibit superior mobility compared to non-metal atoms. We elucidate the electron density aggregation region within the cluster. Configuration 1a demonstrates the highest correlation with molar absorption coefficient for its peak. Analyzing the HOMO and LUMO orbital delocalization index and center-of-mass distances revealed that the front orbits of configuration 5a exhibited a broad distribution in space and the minimum center-of-mass distance.

Methods

This study presents a theoretical investigation of Co-Mo-S clusters employing density functional theory (DFT). DFT is a prevalent method for exploring the electronic structure and characteristics of atoms, molecules, and solids. The paper examines cluster attributes encompassing interatomic interactions, electronic properties, and frontier orbitals. Gaussian09 software is employed for optimizing cluster structures, while the analysis is augmented using Multiwfn wave function analysis software. By harnessing these theoretical and computational tools, it aims to delve deeper into cluster properties, yielding valuable insights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Jiao KJ, Xing YK, Yang QL, Qiu H, Mei TS (2020) Site-selective C-H functionalization via synergistic use of electrochemistry and transition metal catalysis. Acc Chem Res 53(2):300–310

    Article  CAS  PubMed  Google Scholar 

  2. Tang BZ, Liu XP, Li DM, Yu P, Xia L (2020) Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy. Chinese Physics B 29(5):056401

    Article  CAS  Google Scholar 

  3. Fang ZG, Xu Y, Wang ZY, Mao ZL, Zheng XX, Zeng XY, Wu TH (2022) Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy. J Jiangxi Norm Univ(Nat Sci) 46(3):221–226

    Google Scholar 

  4. Zheng XX, Fang ZG, Qin Y, Hou QQ, Wu TH, Mao ZL (2021) Electronic properties of cluster Fe3Ni3. J Guizhou Univ (Nat Sci) 38(05):7–12

    Google Scholar 

  5. Wu TH, Fang ZG, Wang ZY, Song J, Song JL, Liu LE (2023) The stable polarizability of cluster Co2Mo2P3 structure. J Jiangxi Norm Univ (Nat Sci) 47(2):148–153

    Google Scholar 

  6. Fang ZG, Wang ZY, Zheng XX, Qin Y, Mao ZL, Zeng XY, Zhu YW, Wang Q (2022) Study on the dolarizability, dipole moment and density of states of cluster Co3NiB2. J Guizhou Univ (Nat Sci) 39(01):17–24

    Google Scholar 

  7. Mao ZL, Fang ZG, Hou QQ, Wang Q, Xu Y, Song JL (2022) The predictive analysis of cluster Co3FeP spectra. J Jiangxi Norm Univ (Nat Sci) 46(1):81–86

    Google Scholar 

  8. Qin Y, Fang ZG, Zhang W, Li LH, Liao W (2020) The study on the catalytic properties of cluster Co3NiB in the hydrogen evolution reaction. J Jiangxi Norm Univ (Nat Sci) 44(01):56–62

    Google Scholar 

  9. Dai X,Du K,Li Z,Liu M,Ma Y,Sun H,Zhang X, Yang Y. Co-doped MoS2 nanosheets with the dominant CoMoS phase coated on carbon as an excellent electrocatalyst for hydrogen evolution. ACS Appl Mater Interfaces 2015, 7(49): 27242-27253.

    Article  CAS  PubMed  Google Scholar 

  10. Li Y, Zhang H, Jiang M, Kuang Y, Wang H, Sun X (2016) Amorphous Co-Mo-S ultrathin films with low-temperature sulfurization as high-performance electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 4(36):13731–13735

    Article  CAS  Google Scholar 

  11. Li P, Zhuang Z, Du C, Xiang D, Zheng F, Zhang Z, Fang Z, Guo J, Zhu S, Chen W (2020) Insights into the Mo-doping effect on the electrocatalytic performance of hierarchical CoxMoyS nanosheet arrays for hydrogen generation and urea oxidation. ACS Appl Mater Interfaces 12(36):40194–40203

    Article  CAS  PubMed  Google Scholar 

  12. Balamurugan J, Li C, Peera SG, Kim NH, Lee JH (2017) High-energy asymmetric supercapacitors based on free-standing hierarchical Co-Mo-S nanosheets with enhanced cycling stability. Nanoscale 9(36):13747–13759

    Article  CAS  PubMed  Google Scholar 

  13. Yang J, Xuan H, Yang G, Liang T, Han X, Gao J, Xu Y, Xie Z, Han P, Wang D, Du Y (2018) Formation of a flower-like Co-Mo-S on reduced graphene oxide composite on nickel foam with enhanced electrochemical capacitive properties. ChemElectroChem 5(23):3748–3756

    Article  CAS  Google Scholar 

  14. Patil SJ, Lee DW (2018) Scalable and ascendant synthesis of carbon cloth coated hierarchical core–shell CoMoS@Co(OH)2 for flexible and high-performance supercapacitors. J Mater Chem A 6(20):9592–9603

    Article  CAS  Google Scholar 

  15. Song W, Zhou S, Hu S, Lai W, Lian Y, Wang J, Yang W, Wang M, Wang P, Jiang X (2018) Surface engineering of CoMoS nanosulfide for hydrodeoxygenation of lignin-derived phenols to arenes. ACS Catalysis 9(1):259–268

    Article  Google Scholar 

  16. Mukundan S, Beltramini J, Kumar KG, Ravindran DS (2020) Surface engineering of carbon supported CoMoS– an effective nanocatalyst for selective deoxygenation of lignin derived phenolics to arenes. Appl Catal Gen 606:117811

    Article  CAS  Google Scholar 

  17. Lebeau B, Bonne M, Comparot JD, Rousseau J, Michelin L, Blin JL, Brunet S (2020) HDS of 4,6-dimethyldibenzothiophene over CoMoS supported mesoporous SiO2-TiO2 materials. Catalysis Today 357:675–683

    Article  CAS  Google Scholar 

  18. Peng C, Guo R, Feng X, Fang X (2019) Tailoring the structure of Co-Momesoporous γ-Al2O3 catalysts by adding multi-hydroxyl compound A 3000 kta industrial-scale diesel ultra-deep hydrodesulfurization study. Chem Eng J 377:119706

    Article  CAS  Google Scholar 

  19. Krebs E, Silvi B, Daudin A, Raybaud P (2008) A DFT study of the origin of the HDS/HydO selectivity on Co(Ni)MoS active phases. J Catal 260(2):276–287

    Article  CAS  Google Scholar 

  20. Baubet B, Girleanu M, Gay AS, Taleb AL, Moreaud M, Wahl F, Delattre V, Devers E, Hugon A, Ersen O, Afanasiev P, Raybaud P (2016) Quantitative two-dimensional (2D) morphology–selectivity relationship of CoMoS nanolayers: a combined high-resolution high-angle annular dark field scanning transmission electron microscopy (HR HAADF-STEM) and density functional theory (DFT) study. ACS Catalysis 6(2):1081–1092

    Article  CAS  Google Scholar 

  21. Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55(22):2471–2474

    Article  CAS  PubMed  Google Scholar 

  22. Song JL, Fang ZG, Liu LE, Wei DX, Yuan L (2023) Application of density functional theory to study the electronic structure and magnetic behavior of clusters MnPS3(M= Fe, Co, Ni; n= 0 ~ 3). J Mol Model 29(8):240

    Article  CAS  PubMed  Google Scholar 

  23. Kaviani S, Izadyar M, Housaindokht MR (2016) Solvent and spin state effects on molecular structure, IR spectra, binding energies and quantum chemical reactivity indices of deferiprone–ferric complex: DFT study. Polyhedron 117:623–627

    Article  CAS  Google Scholar 

  24. Kaviani S, Izadyar M, Housaindokht MR (2017) A DFT study on the complex formation between desferrithiocin and metal ions (Mg2+, Al3+, Ca2+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+). Comput Biol Chem 67:114–121

    Article  CAS  PubMed  Google Scholar 

  25. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98(45):11623–11627

    Article  CAS  Google Scholar 

  26. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys 7(18):3297–3305

    Article  CAS  PubMed  Google Scholar 

  27. Byskov LS, Hammer B, Nørskov JK, Clausen BS, Topsøe H (1997) Sulfur bonding in MoS2 and Co-Mo-S structures. Catal Lett 47(3):177–182

    Article  CAS  Google Scholar 

  28. Liebing S, Martin C, Trepte K, Kortus J (2015) Electronic and magnetic properties of ConMom nanoclusters from density functional calculations (n+m=x and 2≤x≤6 atoms). Physical Review B 91(15):155421

    Article  Google Scholar 

  29. Juárez-Sánchez OJ, Perez-Peralta N, Herrera-Urbina R, Sanchez M (2013) Structures and electronic properties of neutral (CuS)N clusters(N=1-6): A DFT approach. Chem Phys Lett 570:132–135

    Article  Google Scholar 

  30. Peng L, Wu SY, Guo JX, Zhong SY, Chen XH (2018) Theoretical investigations on the structural, electronic and spectral properties of VFn(n=1–7) clusters. Zeitschrift für Naturforschung A 73(12):1091–1104

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al (2013) Gaussian 09, Revision D. 01. Gaussian, Inc., Wallingford CT

    Google Scholar 

  32. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  PubMed  Google Scholar 

  33. Lu T, Chen Q (2021) Interaction region indicator: a simple real space function clearly revealing both chemical bonds and weak interactions. Chemistry-Methods 1(5):231–239

    Article  CAS  Google Scholar 

  34. Kaviani S, Tayurskii DA, Nedopekin OV, Piyanzina I (2022) DFT-based modeling of polypyrole/B12N12 nanocomposite for the photocatalytic applications. J Phys Chem Solid 170:110949

    Article  CAS  Google Scholar 

  35. Hassan AU, Sumrra SH, Mustafa G, Zubair M, Mohyuddin A, Nkungli NK, Imran M (2023) Molecular modeling of mordant black dye for future applications as visible light harvesting materials with anchors: design and excited state dynamics. J Mol Model 29(3):74

    Article  CAS  PubMed  Google Scholar 

  36. Hassan AU, Sumrra SH, Mustafa G, Nazar MF, Zafar MN (2023) Efficient and tunable enhancement of NLO performance for indaceno-based donor moiety in A-π-D-π-D-π-A type first DSSC design by end-capped acceptors. J Mol Model 29(1):4

    Article  CAS  Google Scholar 

  37. Hassan AU, Sumrra SH, Zafar M, Mohyuddin A, Noreen S, Güleryüz C (2023) DFT-guided structural modeling of end-group acceptors at Y123 core for sensitizers as high-performance organic solar dyes and NLO responses. J Mol Model 29(8):1–17

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to the National Natural Science Foundation of China and National Innovation and Entrepreneurship Training Program for College Students.

Funding

This work was supported by the Key Program of the National Natural Science Foundation of China (Grant No.51634004); National Innovation and Entrepreneurship Training Program for College Students (Grant No.: 202210146008, 202210146011, 202210146009).

Author information

Authors and Affiliations

Authors

Contributions

Zhi-yao Wang: writing, data management, methodology, and article proofreading. Zhi-gang Fang: conceptualization and project management. Li-e Liu: article proofreading, verification, and methodology. Ting-hui Wu: article proofreading.

Corresponding author

Correspondence to Zhi-gang Fang.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Zy., Fang, Zg., Liu, Le. et al. Density functional theory studies on properties of cluster ConMoS (n=1 ~ 5): interatomic interactions, electronic properties, frontier orbitals. J Mol Model 29, 326 (2023). https://doi.org/10.1007/s00894-023-05730-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05730-1

Keywords

Navigation