Skip to main content
Log in

On the CO\(_{2}\) adsorption in a boron nitride analog for the recently synthesized biphenylene network: a DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Recent advances in nanomaterial synthesis and characterization have led to exploring novel 2D materials. The biphenylene network (BPN) is a notable achievement in current fabrication efforts. Numerical studies have indicated the stability of its boron nitride counterpart, known as BN-BPN. In this study, we employ computational simulations to investigate the electronic and structural properties of pristine and doped BN-BPN monolayers upon CO\(_2\) adsorption. Our findings demonstrate that pristine BN-BPN layers exhibit moderate adsorption energies for CO\(_2\) molecules, approximately \(-\)0.16 eV, indicating physisorption. However, introducing one-atom doping with silver, germanium, nickel, palladium, platinum, or silicon significantly enhances CO\(_2\) adsorption, leading to adsorption energies ranging from \(-\)0.13 to \(-\)0.65 eV. This enhancement indicates the presence of both physisorption and chemisorption mechanisms. BN-BPN does not show precise CO\(_2\) sensing and selectivity. Furthermore, our investigation of the recovery time for adsorbed CO\(_2\) molecules suggests that the interaction between BN-BPN and CO\(_2\) cannot modify the electronic properties of BN-BPN before the CO\(_2\) molecules escape.

Methods

We performed density functional theory (DFT) simulations using the DMol3 code in the Biovia Materials Studio software. We incorporated Van der Waals corrections (DFT-D) within the Grimme scheme for an accurate representation. The exchange and correlation functions were treated using the Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA). We used a double-zeta plus polarization (DZP) basis set to describe the electronic structure. Additionally, we accounted for the basis set superposition error (BSSE) through the counterpoise method. We included semicore DFT pseudopotentials to accurately model the interactions between the nuclei and valence electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Han WQ, Wu L, Zhu Y, Watanabe K, Taniguchi T (2008) Applied Physics Letters 93(22):223103

    Article  Google Scholar 

  2. Giovannetti G, Khomyakov PA, Brocks G, Kelly PJ, Van Den Brink J (2007) Physical Review B 76(7):073103

    Article  Google Scholar 

  3. Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C, Zhi C (2010) ACS nano 4(6):2979

    Article  CAS  PubMed  Google Scholar 

  4. Guo N, Wei J, Jia Y, Sun H, Wang Y, Zhao K, Shi X, Zhang L, Li X, Cao A et al (2013) Nano Research 6:602

    Article  CAS  Google Scholar 

  5. Liu Z, Gong Y, Zhou W, Ma L, Yu J, Idrobo JC, Jung J, MacDonald AH, Vajtai R, Lou J et al (2013) Nature communications 4(1):2541

    Article  PubMed  Google Scholar 

  6. Niu B, Jia D, Cai D, Yang Z, Duan X, Duan W, Li Q, Qiu B, He P, Zhou Y (2020) Scripta Materialia 178:402

    Article  CAS  Google Scholar 

  7. Husain E, Narayanan TN, Taha-Tijerina JJ, Vinod S, Vajtai R, Ajayan PM (2013) ACS applied materials & interfaces 5(10):4129

    Article  CAS  Google Scholar 

  8. Mahvash F, Eissa S, Bordjiba T, Tavares A, Szkopek T, Siaj M (2017) Scientific reports 7(1):42139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guerra V, Wan C, McNally T (2019) Progress in Materials Science 100:170

    Article  CAS  Google Scholar 

  10. Xu H, Ding B, Xu Y, Huang Z, Wei D, Chen S, Lan T, Pan Y, Cheng HM, Liu B (2022) Nature Nanotechnology 17(10):1091

    Article  CAS  PubMed  Google Scholar 

  11. Moon S, Kim J, Park J, Im S, Kim J, Hwang I, Kim JK (2023) Advanced Materials 35(4):2204161

    Article  CAS  Google Scholar 

  12. Zheng XQ, Lee J, Feng PXL (2017) Microsystems & Nanoengineering 3(1):1

    Article  Google Scholar 

  13. Wang L, Wu B, Chen J, Liu H, Hu P, Liu Y (2014) Advanced materials 26(10):1559

    Article  CAS  PubMed  Google Scholar 

  14. Lee GH, Yu YJ, Cui X, Petrone N, Lee CH, Choi MS, Lee DY, Lee C, Yoo WJ, Watanabe K et al (2013) ACS nano 7(9):7931

    Article  CAS  PubMed  Google Scholar 

  15. Petrone N, Chari T, Meric I, Wang L, Shepard KL, Hone J (2015) ACS nano 9(9):8953

    Article  CAS  PubMed  Google Scholar 

  16. Alem N, Erni R, Kisielowski C, Rossell MD, Gannett W, Zettl A (2009) Physical Review B 80(15):155425

    Article  Google Scholar 

  17. Cho DH, Kim JS, Kwon SH, Lee C, Lee YZ (2013) Wear 302(1–2):981

    Article  CAS  Google Scholar 

  18. Toh CT, Zhang H, Lin J, Mayorov AS, Wang YP, Orofeo CM, Ferry DB, Andersen H, Kakenov N, Guo Z et al (2020) Nature 577(7789):199

    Article  CAS  PubMed  Google Scholar 

  19. Zhang YT, Wang YP, Zhang X, Zhang YY, Du S, Pantelides ST (2022) Nano Letters 22(19):8018

    Article  CAS  PubMed  Google Scholar 

  20. Zhang S, Zhou J, Wang Q, Chen X, Kawazoe Y, Jena P (2015) Proceedings of the National Academy of Sciences 112(8):2372

    Article  CAS  Google Scholar 

  21. Dantas M, Frazão N, Azevedo DL, Lima JR (2021) Computational Materials Science 190:110275

    Article  CAS  Google Scholar 

  22. Liu Y, Wang G, Huang Q, Guo L, Chen X (2012) Physical review letters 108(22):225505

    Article  PubMed  Google Scholar 

  23. Majidi R (2015) Physica E: Low-dimensional Systems and Nanostructures 74:371

    Article  CAS  Google Scholar 

  24. Siqi J, Shasha Y, Xiao W, Gu W (2020) Molecular Physics 118(18):e1757775

    Article  Google Scholar 

  25. Wang Z, Zhou XF, Zhang X, Zhu Q, Dong H, Zhao M, Oganov AR (2015) Nano letters 15(9):6182

    Article  CAS  PubMed  Google Scholar 

  26. Pontes J, Frazão N, Azevedo DL, Lima JR (2021) Computational Materials Science 188:110210

    Article  CAS  Google Scholar 

  27. Shahrokhi M, Mortazavi B, Berdiyorov GR (2017) Solid State Communications 253:51

    Article  CAS  Google Scholar 

  28. P. Rublev, N.V. Tkachenko, A.I. Boldyrev, Journal of Computational Chemistry (2022)

  29. X.D. Ma, Z.W. Tian, R. Jia, F.Q. Bai, Applied Surface Science p. 153674 (2022)

  30. Karaush NN, Bondarchuk SV, Baryshnikov GV, Minaeva VA, Sun WH, Minaev BF (2016) RSC advances 6(55):49505

    Article  CAS  Google Scholar 

  31. Fan Q, Yan L, Tripp MW, Krejčí O, Dimosthenous S, Kachel SR, Chen M, Foster AS, Koert U, Liljeroth P et al (2021) Science 372(6544):852

    Article  CAS  PubMed  Google Scholar 

  32. Demirci S, Gorkan T, Callıogglu S, Ozcelik VO, Barth JV, Akturk E, Ciraci S (2022) The Journal of Physical Chemistry C 126(36):15491

    Article  CAS  Google Scholar 

  33. Esfandiarpour R, Zamanian F, Badalkhani-Khamseh F, Hosseini MR (2022) Computational and Theoretical Chemistry 1218:113939

    Article  CAS  Google Scholar 

  34. Lakshmy S, Sanyal G, Kalarikkal N, Chakraborty B (2023) Applied Surface Science 613:155995

    Article  CAS  Google Scholar 

  35. Su WS, Yeh CH (2022) Diamond and Related Materials 124:108897

    Article  CAS  Google Scholar 

  36. Tian Y, Lin Y, Hagio T, Hu YH (2020) Catalysis Today 356:514

    Article  CAS  Google Scholar 

  37. Ghosh A, Subrahmanyam K, Krishna KS, Datta S, Govindaraj A, Pati SK, Rao C (2008) The Journal of Physical Chemistry C 112(40):15704

    Article  CAS  Google Scholar 

  38. Bareza NJ, Paulillo B, Slipchenko TM, Autore M, Dolado I, Liu S, Edgar JH, Velez S, Martin-Moreno L, Hillenbrand R et al (2022) ACS photonics 9(1):34

    Article  CAS  Google Scholar 

  39. Kalwar BA, Fangzong W, Soomro AM, Naich MR, Saeed MH, Ahmed I (2022) RSC advances 12(53):34185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li M, Huang G, Chen X, Yin J, Zhang P, Yao Y, Shen J, Wu Y, Huang J (2022) Nano Today 44:101486

    Article  CAS  Google Scholar 

  41. K.A.L. Lima, L.A. Ribeiro, ArXiv Preprint (2023). https://doi.org/10.48550/arXiv.2305.12004

  42. J. Ramirez-de Arellano, A.F. Jiménez G, L. Magaña, Crystals 11(6), 662 (2021)

  43. Zhang K, Feng Y, Wang F, Yang Z, Wang J (2017) Journal of Materials Chemistry C 5(46):11992

    Article  CAS  Google Scholar 

  44. Molaei MJ, Younas M, Rezakazemi M (2021) ACS Applied Electronic Materials 3(12):5165

    Article  CAS  Google Scholar 

  45. Bhimanapati GR, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano MS, Cooper VR et al (2015) ACS nano 9(12):11509

    Article  CAS  PubMed  Google Scholar 

  46. Duzenli D (2016) The Journal of Physical Chemistry C 120(36):20149

    Article  CAS  Google Scholar 

  47. Gharib A, Arab A (2023) International Journal of Hydrogen Energy 48(2):566

    Article  CAS  Google Scholar 

  48. Grimme S (2006) Journal of computational chemistry 27(15):1787

    Article  CAS  PubMed  Google Scholar 

  49. Delley B (1990) The Journal of chemical physics 92(1):508

    Article  CAS  Google Scholar 

  50. Andzelm J, Kölmel C, Klamt A (1995) The Journal of Chemical Physics 103(21):9312. https://doi.org/10.1063/1.469990

    Article  CAS  Google Scholar 

  51. Delley B (2000) The Journal of chemical physics 113(18):7756

    Article  CAS  Google Scholar 

  52. D. Systèmes, San Diego (2017)

  53. Kresse G, Joubert D (1999) Physical review b 59(3):1758

    Article  CAS  Google Scholar 

  54. Perdew JP, Burke K, Ernzerhof M (1996) Physical review letters 77(18):3865

    Article  CAS  PubMed  Google Scholar 

  55. Delley B (2002) Physical Review B 66(15):155125

    Article  Google Scholar 

  56. Perdew JP, Wang Y (1992) Physical review B 45(23):13244

    Article  CAS  Google Scholar 

  57. Kohn W, Sham LJ (1965) Physical review 140(4A):A1133

    Article  Google Scholar 

  58. Monkhorst HJ, Pack JD (1976) Physical review B 13(12):5188

    Article  Google Scholar 

  59. K.A.L. Lima, W.F.d. Cunha, F.F. Monteiro, B.G. Enders, M.L.P. Jr, L.A.R. Jr, Journal of Molecular Modeling 25, 1 (2019)

  60. E.N.C. Paura, W.F. da Cunha, P.H. de Oliveira Neto, G.M. e Silva, J.B. Martins, R. Gargano, The Journal of Physical Chemistry A 117(13), 2854 (2013)

  61. E.N. Paura, W.F. da Cunha, J.B.L. Martins, G.M. e Silva, L.F. Roncaratti, R. Gargano, Rsc Advances 4(54), 28249 (2014)

  62. Lima IT, Gargano R, Guerini S, Paura EN (2019) New Journal of Chemistry 43(20):7778

  63. Liu G, Chen T, Li X, Xu Z, Xiao X (2022) Applied Surface Science 599:153993

    Article  CAS  Google Scholar 

  64. Ren K, Shu H, Huo W, Cui Z, Xu Y (2022) Nanotechnology 33(34):345701

    Article  Google Scholar 

  65. J.M. Ramírez-de Arellano, A.F. Jiménez-González, L.F. Magaña, Crystals 12(12), 1773 (2022)

  66. Timsorn K, Wongchoosuk C (2020) Materials Research Express 7(5):055005. https://doi.org/10.1088/2053-1591/ab8b8b

Download references

Acknowledgements

L.A.R.J acknowledges the financial support from Brazilian Research Council FAP-DF grants \(00193-00001247/2021-20\), \(00193.00001808/2022-71\), and \(00193-00000857/2021-14\), CNPq grants \(302236/2018-0\) and 350176 /2022-1, and FAP-DF-PRONEM grant \(00193.00001247/2021-20\). W.F.G acknowledges the financial support from FAP-DF grant \(00193-00000811/2021-97\). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 88887.691997/2022-00. RTDS is supported by CNPq-Brazilian National Research Council (Grant 310941/2022-9 PQ-1D), FAPDF-Brazilian Federal District Research Support Foundation (Grant 625/2022 SIST\(\varepsilon \)R City), and the University of Brasilia (Grant 7129 UnB COPEI).

Funding

This work received partial support from the Brazilian agencies CAPES, CNPq, and FAPDF. L.A.R.J thanks the financial support from FAP-DF grants from the Brazilian Research Council FAP-DF grants \(00193-00000857/2021-14\), \(00193-00000853/2021-28\), and \(00193-00000811/2021-97\), CNPq grants \(302236/2018-0\) and \(350176/2022-1\), and FAPDF-PRONEM grant \(00193.00001247/2021-20\). L.A.R.J also thanks ABIN grant 08/2019.

Author information

Authors and Affiliations

Authors

Contributions

E.J.A.S., W.F.G., R.T.S.J., and N.J.N.C.: data curation, formal analysis, methodology, prepared figures, and writing—original draft preparation. L.A.R.J. and K.A.L.L.: conceptualization, funding acquisition and writing—reviewing and editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Luiz A. Ribeiro Júnior.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to the Topical Collection IX Symposium on Electronic Structure and Molecular Dynamics - IX SeedMol.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 8796 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, E.J.A., Giozza, W.F., de Souza Júnior, R.T. et al. On the CO\(_{2}\) adsorption in a boron nitride analog for the recently synthesized biphenylene network: a DFT study. J Mol Model 29, 327 (2023). https://doi.org/10.1007/s00894-023-05709-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05709-y

Keywords

Navigation