Skip to main content
Log in

Formation and stability of nanoscrolls composed of graphene and hexagonal boron nitride nanoribbons: insights from molecular dynamics simulations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Nanoscrolls are tube-shaped structures formed when a sheet or ribbon of material is rolled into a cylinder, creating a hollow tube with a diameter on the nanoscale, similar to the papyrus. Carbon nanoscrolls have unique properties that make them useful in various applications, such as energy storage, catalysis, and drug delivery. In this study, we employed classical molecular dynamics simulations to investigate the formation and stability of nanoscrolls composed of graphene and hexagonal boron nitride (hBN) nanoribbons. Using a carbon nanotube (CNT) as a template to trigger their collapsing, we found that graphene/graphene, graphene/hBN, and hBN/hBN could form CNT-wrapped nanoscrolls at ultrafast speeds. We also confirmed that these nanoscrolls are thermally stable and discussed the other products formed from the interaction of these complexes and their temperature dependence. Gr/Gr and hBN/Gr nanoscrolls exhibit similar interlayer distances, while hBN/hBN nanoscrolls have wider interlayer distances than the other two composite nanoscrolls. These features suggest that hBN/hBN composite nanoscrolls could more efficiently capture small molecules because of their greater interlayer spacing.

Methods

We conducted molecular dynamics simulations using the Forcite package in the Biovia Materials Studio software, which employs the Universal and Dreiding force fields. We considered an NVT ensemble with a fixed time step of 1.0 fs for a duration of 500 ps. The velocity Verlet algorithm was adopted to integrate the equations of motion of the entire system. We employed the Nosé-Hoover-Langevin thermostat to control the system temperature. The simulations were carried out without periodic boundary conditions, so there was no pressure coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

N/A

Code availability

N/A

References

  1. Liu H, Le T, Zhang L, Xu M (2018) J Mater Sci: Mater Electron 29:18891

    CAS  Google Scholar 

  2. Perim E, Machado LD, Galvao DS (2014) Frontiers in Materials 1:31

    Google Scholar 

  3. Viculis LM, Mack JJ, Kaner RB (2003) Science 299(5611):1361

    CAS  PubMed  Google Scholar 

  4. Xie X, Ju L, Feng X, Sun Y, Zhou R, Liu K, Fan S, Li Q, Jiang K (2009) Nano Lett 9(7):2565

    CAS  PubMed  Google Scholar 

  5. Shi X, Pugno NM, Gao H (2010) Acta Mech Solida Sin 23(6):484

    Google Scholar 

  6. Braga SF, Coluci VR, Legoas SB, Giro R, Galvão DS, Baughman RH (2004) Nano Lett 4(5):881

    CAS  Google Scholar 

  7. Mpourmpakis G, Tylianakis E, Froudakis GE (2007) Nano Lett 7(7):1893

    CAS  PubMed  Google Scholar 

  8. Coluci V, Braga S, Baughman R, Galvao D (2007) Phys Rev B 75(12):125404

    Google Scholar 

  9. Hai-Zhen Z, Halidan M, Pei-Shuai Z, Li-Rong F, Jin-Yan S (2021) J Nanopart Res 24(2)

  10. Shi X, Cheng Y, Pugno NM, Gao H (2010) Small 6(6):739

  11. Shi X, Pugno NM, Cheng Y, Gao H (2009) Appl Phys Lett 95(16):163113

    Google Scholar 

  12. Zhang Z, Li T (2011) Nanoscale Res Lett 6:1

    Google Scholar 

  13. Zhou HQ, Qiu CY, Yang HC, Yu F, Chen MJ, Hu LJ, Guo YJ, Sun LF (2011) Chem Phys Lett 501(4–6):475

  14. Lin SY, Chang SL, Chiang CR, Li WB, Liu HY, Lin MF (2021) Nanomaterials 11(6):1372

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pan H, Feng Y, Lin J (2005) Phys Rev B 72(8):085415

    Google Scholar 

  16. Chen Y, Lu J, Gao Z (2007) J Phys Chem C 111(4):1625

    CAS  Google Scholar 

  17. Junior MLP, da Cunha WF, Galvão DS, Junior LAR (2021) Phys Chem Chem Phys 23(15):9089

    Google Scholar 

  18. Cheng G, Calizo I, Liang X, Sperling BA, Johnston-Peck AC, Li W, Maslar JE, Richter CA, Walker ARH (2014) Carbon 76:257

    CAS  Google Scholar 

  19. Xu Z, Zheng B, Chen J, Gao C (2014) Chem Mater 26(23):6811

    CAS  Google Scholar 

  20. Zhao J, Yang B, Yang Z, Zhang P, Zheng Z, Ren W, Yan X (2014) Carbon 79:470

    CAS  Google Scholar 

  21. Jayasena B, Subbiah S, Reddy C (2012) In: 2012 12th IEEE International Conference on Nanotechnology (IEEE-NANO). IEEE, pp 1–5

  22. Skrabalak SE (2009) Phys Chem Chem Phys 11(25):4930

    CAS  PubMed  Google Scholar 

  23. Gao Y, Chen X, Xu H, Zou Y, Gu R, Xu M, Jen AKY, Chen H (2010) Carbon 48(15):4475

  24. Perim E, Paupitz R, Galvao DS (2013) J Appl Phys 113(5):054306

  25. Zheng B, Xu Z, Gao C (2016) Nanoscale 8(3):1413

    CAS  PubMed  Google Scholar 

  26. Song H, Geng S, An M, Zha X (2013) J Appl Phys 113(16):164305

    Google Scholar 

  27. Kim JH, Benelmekki M (2018) In: Emerging Applications of Nanoparticles and Architecture Nanostructures. Elsevier, pp 553–574

  28. Wang Y, Zhan H, Yang C, Xiang Y, Zhang Y (2015) Comput Mater Sci 96:300

    CAS  Google Scholar 

  29. Zhang D, Yang H (2016) J Mol Struct 1125:282

    CAS  Google Scholar 

  30. Zhang Z, Li T (2010) Appl Phys Lett 97(8):081909

    Google Scholar 

  31. Júnior MP, Júnior LR, Galvão DS, De Sousa JM (2021) Chem Phys Lett 780:138919

    Google Scholar 

  32. Patra N, Wang B, Král P (2009) Nano Lett 9(11):3766

    CAS  PubMed  Google Scholar 

  33. Perim E, Galvao DS (2009) Nanotechnology 20(33):335702

    PubMed  Google Scholar 

  34. Qayyum MS, Hayat H, Matharu RK, Tabish TA, Edirisinghe M (2019) Appl Phys Rev 6(2):021310

    Google Scholar 

  35. Kim JH, Lu TM (2016) RSC Adv 6(21):17179

    CAS  Google Scholar 

  36. Li X, Zhang T, Gu S, Kang SZ, Li G, Mu J (2013) Sep Purif Technol 108:139

    CAS  Google Scholar 

  37. Ji E, Son J, Kim JH, Lee GH (2018) FlatChem 7:26

    CAS  Google Scholar 

  38. Aftab S, Iqbal MZ, Rim YS (2023) Small 19:2205418

    CAS  Google Scholar 

  39. Cui X, Kong Z, Gao E, Huang D, Hao Y, Shen H, Di C, Xu Z, Zheng J, Zhu D (2018) Nat Commun 9:1301

  40. Ghosh R, Singh M, Chang LW, Lin HI, Chen YS, Muthu J, Papnai B, Kang YS, Liao YM, Bera KP, Guo GY, Hsieh YP, Hofmann M, Chen YF (2022) ACS Nano 16:5743

    CAS  PubMed  Google Scholar 

  41. Wang L, Yue Q, Pei C, Fan H, Dai J, Huang X, Li H, Huang W (2020) Nano Res 13:959

    CAS  Google Scholar 

  42. Deng W, You C, Chen X, Wang Y, Li Y, Feng B, Shi K, Chen Y, Sun L, Zhang Y (2019) Small 15:1970160

    Google Scholar 

  43. Han MY, Özyilmaz B, Zhang Y, Kim P (2007) Phys Rev Lett 98(20):206805

    PubMed  Google Scholar 

  44. Son YW, Cohen ML, Louie SG (2006) Phys Rev Lett 97(21):216803

    PubMed  Google Scholar 

  45. Park CH, Louie SG (2008) Nano Lett 8(8):2200

    CAS  PubMed  Google Scholar 

  46. Barone V, Peralta JE (2008) Nano Lett 8(8):2210

    CAS  PubMed  Google Scholar 

  47. Systèmes D (2017) San Diego

  48. Rappe AK, Casewit CJ, Colwell KS, Goddard WAI, Skiff WM (1992) J Am Chem Soc 114:10024

    CAS  Google Scholar 

  49. Mayo SL, Olafson BD, Goddard WA (1990) J Phys Chem 94:8897

    CAS  Google Scholar 

  50. Senftle TP, Hong S, Islam MM, Kylasa SB, Zheng Y, Shin YK, Junkermeier C, Engel-Herbert R, Janik MJ, Aktulga HM et al (2016) npj Computational Materials 2(1):1

  51. Liang T, Shan TR, Cheng YT, Devine BD, Noordhoek M, Li Y, Lu Z, Phillpot SR, Sinnott SB (2013) Mater Sci Eng R Rep 74(9):255

    Google Scholar 

  52. Tersoff J (1989) Phys Rev B 39(8):5566

    CAS  Google Scholar 

  53. Sha H, Zhang S, Faller R (2018) Carbon 132:401

    CAS  Google Scholar 

  54. Li X, Jin Y, Xue Q, Zhu L, Xing W, Zheng H, Liu Z (2017) J CO2 Util 18:275

  55. Li X, Xue Q, Chang X, Zhu L, Zheng H (2017) J CO2 Uti 21:429

  56. Daff TD, Collins SP, Dureckova H, Perim E, Skaf MS, Galvão DS, Woo TK (2016) Carbon 101:218

    CAS  Google Scholar 

Download references

Funding

This work received partial support from Brazilian agencies CAPES, CNPq, and FAPDF. L.A.R.J thanks the financial support from Brazilian Research Council FAP-DF grants \(00193-00000857/2021-14\), \(00193-00000853/2021-28\), and \(00193-00000811/2021-97\), CNPq grants \(302236/2018-0\) and \(350176/2022-1\), and FAPDF-PRONEM grant \(00193.00001247/2021-20\). L.A.R.J also thanks ABIN grant 08/2019.

Author information

Authors and Affiliations

Authors

Contributions

K.A.L.L.: data curation, formal analysis, methodology, and writing—original draft preparation. L. A. Ribeiro Júnior: conceptualization, funding acquisition, and writing—reviewing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Luiz Antonio Ribeiro Júnior.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to the Topical Collection on IX Symposium on Electronic Structure and Molecular Dynamics - IX SeedMol.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (avi 3718 KB)

Supplementary file 2 (avi 3718 KB)

Supplementary file 3 (avi 3456 KB)

Supplementary file 4 (avi 9817 KB)

Supplementary file 5 (avi 3396 KB)

Supplementary file 6 (avi 5715 KB)

Supplementary file 7 (avi 3966 KB)

Supplementary file 8 (pdf 3458 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, K.A.L., Ribeiro Júnior, L.A. Formation and stability of nanoscrolls composed of graphene and hexagonal boron nitride nanoribbons: insights from molecular dynamics simulations. J Mol Model 29, 339 (2023). https://doi.org/10.1007/s00894-023-05702-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05702-5

Keywords

Navigation