Skip to main content
Log in

Examining O\(_{2}\) adsorption on pristine and defective popgraphene sheets: A DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Popgraphene (PopG) is a two-dimensional carbon-based material with fused pentagonal and octagonal rings. Like graphene, it exhibits a metallic band gap and exceptional thermal, dynamic, and mechanical stability. Here, we theoretically study the electronic and structural properties of PopG monolayers, including their doped and vacancy-endowed versions, as O\(_{2}\) adsorbers. Our findings show that pristine and vacancy-endowed PopG sheets have a comparable ability to adsorb O\(_{2}\) molecules, with adsorption energies ranging from \(-\)0.57 to \(-\)0.59 eV (physisorption). In these cases, octagonal rings play a dominant role in the adsorption mechanism. Platinum and Silicon doping enhance the O\(_{2}\) adsorption in areas close to the octagonal rings, resulting in adsorption energies ranging from \(-\)1.13 to \(-\)2.56 eV (chemisorption). Furthermore, we computed the recovery time for the adsorbed O\(_{2}\) molecules. The results suggest that PopG/O\(_2\) interaction in pristine and vacancy-endowed cases can change the PopG electronic properties before O\(_2\) diffusion.

Methods

Density Functional Theory (DFT) simulations, with Van der Waals corrections (DFT-D, within the Grimme scheme), were performed to study the structural and electronic properties of PopG/O\(_2\) systems using the DMol3 code within the Biovia Materials Studio software. The exchange and correlation functions are treated within the generalized gradient approximation (GGA) as parameterized by Perdew-Burke-Ernzerhof (PBE) functional. We used the double-zeta plus polarization (DZP) for the basis set in these cases. We also considered the BSSE correction through the counterpoise method and the nuclei-valence electron interactions by including semi-core DFT pseudopotentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Bhimanapati GR, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano MS, Cooper VR et al (2015) ACS nano 9(12):11509

    Article  CAS  PubMed  Google Scholar 

  2. Novoselov KS, Geim AK, Morozov SV, Jiang De, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) science 306(5696):666

  3. Avouris P, Freitag M (2013) IEEE Journal of selected topics in quantum electronics 20(1):72

    Article  Google Scholar 

  4. Zhang S, Zhou J, Wang Q, Chen X, Kawazoe Y, Jena P (2015) Proceedings of the National Academy of Sciences 112(8):2372

    Article  CAS  Google Scholar 

  5. Wang Z, Zhou XF, Zhang X, Zhu Q, Dong H, Zhao M, Oganov AR (2015) Nano letters 15(9):6182

    Article  CAS  PubMed  Google Scholar 

  6. Li X, Wang Q, Jena P (2017) The journal of physical chemistry letters 8(14):3234

    Article  CAS  PubMed  Google Scholar 

  7. Wang S, Yang B, Chen H, Ruckenstein E (2018) Journal of Materials Chemistry A 6(16):6815

    Article  CAS  Google Scholar 

  8. Chen JH, Autès G, Alem N, Gargiulo F, Gautam A, Linck M, Kisielowski C, Yazyev O, Louie S, Zettl A (2014) Physical Review B 89(12):121407

    Article  Google Scholar 

  9. Fan Q, Yan L, Tripp MW, Krejčí O, Dimosthenous S, Kachel SR, Chen M, Foster AS, Koert U, Liljeroth P et al (2021) Science 372(6544):852

    Article  CAS  PubMed  Google Scholar 

  10. Hu Y, Wu C, Pan Q, Jin Y, Lyu R, Martinez V, Huang S, Wu J, Wayment LJ, Clark NA et al (2022) Nature Synthesis 1(6):449

    Article  Google Scholar 

  11. Desyatkin VG, Martin WB, Aliev AE, Chapman NE, Fonseca AF, Galvão DS, Miller ER, Stone KH, Wang Z, Zakhidov D et al (2022) Journal of the American Chemical Society 144(39):17999

    Article  CAS  PubMed  Google Scholar 

  12. Toh CT, Zhang H, Lin J, Mayorov AS, Wang YP, Orofeo CM, Ferry DB, Andersen H, Kakenov N, Guo Z et al (2020) Nature 577(7789):199

    Article  CAS  PubMed  Google Scholar 

  13. Hou L, Cui X, Guan B, Wang S, Li R, Liu Y, Zhu D, Zheng J (2022) Nature 606(7914):507

    Article  CAS  PubMed  Google Scholar 

  14. Jana S, Bandyopadhyay A, Datta S, Bhattacharya D, Jana D (2021) Journal of Physics: Condensed Matter 34(5):053001

    Google Scholar 

  15. Sattar N, Sajid H, Tabassum S, Ayub K, Mahmood T, Gilani MA (2022) Science of The Total Environment 824:153858

    Article  CAS  PubMed  Google Scholar 

  16. Ashraf A, Herbert JM, Muhammad S, Farooqi BA, Farooq U, Salman M, Ayub K (2022) ACS omega 7(2):2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jadoon T, Ahsin A, Ullah F, Mahmood T, Ayub K (2021) Journal of Molecular Liquids 341:117415

    Article  CAS  Google Scholar 

  18. Jadoon T, Mahmood T, Ayub K (2021) Journal of Physics and Chemistry of Solids 153:110028

    Article  CAS  Google Scholar 

  19. Khan S, Sajid H, Ayub K, Mahmood T (2020) Journal of Molecular Liquids 316:113860

    Article  CAS  Google Scholar 

  20. Popov MN, Dengg T, Gehringer D, Holec D (2020) C 6(2):20

  21. Álvarez-Zapatero P, Herrero A, Lebon A, Gallego L, Vega A (2021) International Journal of Hydrogen Energy 46(29):15724

    Article  Google Scholar 

  22. Kumar AVN, Prabhu SM, Shin WS, Yadav KK, Ahn Y, Abdellattif MH, Jeon BH (2022) Coordination Chemistry Reviews 467:214613

    Article  Google Scholar 

  23. Kamran U, Park SJ (2021) Journal of Cleaner Production 290:125776

    Article  CAS  Google Scholar 

  24. Ataca C, Ibrahim A, Bhattarai A (2023) Bulletin of the American Physical Society

  25. Li C, Wang Y, Li C, Xu S, Hou X, Wu P (2019) ACS applied materials & interfaces 11(23):20770

    Article  CAS  Google Scholar 

  26. Wang Z, Li P, Chen Y, Liu J, Zhang W, Guo Z, Dong M, Li Y (2015) Journal of Materials Chemistry C 3(24):6301

    Article  CAS  Google Scholar 

  27. Chen Y, Liu Yj, Wang Hx, Zhao Jx, Cai Qh, Wang Xz, Ding Yh (2013) ACS applied materials & interfaces 5(13):5994

  28. Huang K, Sun Y, Zhang Y, Wang X, Zhang W, Feng S (2019) Advanced Materials 31(38):1801430

    Article  Google Scholar 

  29. Kim J, Park J, Lee J, Lim WG, Jo C, Lee J (2021) Advanced Functional Materials 31(22):2010882

    Article  CAS  Google Scholar 

  30. Pendashteh A, Palma J, Anderson M, Marcilla R (2017) Applied Catalysis B: Environmental 201:241

    Article  CAS  Google Scholar 

  31. Wang S (2011) Physical Chemistry Chemical Physics 13(25):11929

    Article  CAS  PubMed  Google Scholar 

  32. Mélinon P, Masenelli B, Tournus F, Perez A (2007) Nature materials 6(7):479

    Article  PubMed  Google Scholar 

  33. Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Chemical reviews 115(11):4744

    Article  CAS  PubMed  Google Scholar 

  34. Singla M, Sharma D, Jaggi N (2021) International Journal of Hydrogen Energy 46(29):16188

    Article  CAS  Google Scholar 

  35. Chen Y, Yang Xc, Liu Yj, Zhao Jx, Cai Qh, Wang Xz (2013) Journal of Molecular Graphics and Modelling 39:126

  36. Kumar S, Sharma S, Karmaker R, Sinha D (2021) Materials Today Communications 26:101755

    Article  CAS  Google Scholar 

  37. Salih E, Ayesh AI (2021) Materials Chemistry and Physics 267:124695

    Article  CAS  Google Scholar 

  38. Tang Y, Yang Z, Dai X, Ma D, Fu Z (2013) The Journal of Physical Chemistry C 117(10):5258

    Article  CAS  Google Scholar 

  39. Yuksel N, Kose A, Fellah MF (2022) Sensors and Actuators A: Physical 344:113726

    Article  CAS  Google Scholar 

  40. Gong B, Wu H, Sheng L, Zhang W, Wu X (2022) ACS Applied Materials & Interfaces 14(11):13231

    Article  CAS  Google Scholar 

  41. Esrafili MD, Saeidi N, Nematollahi P (2016) Chemical Physics Letters 658:146

    Article  CAS  Google Scholar 

  42. Düzenli D (2016) The Journal of Physical Chemistry C 120(36):20149

    Article  Google Scholar 

  43. Mao X, Kour G, Zhang L, He T, Wang S, Yan C, Zhu Z, Du A (2019) Catalysis Science & Technology 9(23):6800

    Article  CAS  Google Scholar 

  44. Pullamsetty A, Subbiah M, Sundara R (2015) International journal of hydrogen energy 40(32):10251

    Article  CAS  Google Scholar 

  45. Lee Y, Lee S, Hwang Y, Chung YC (2014) Applied surface science 289:445

    Article  CAS  Google Scholar 

  46. Zou Y, Li F, Zhu Z, Zhao M, Xu X, Su X (2011) The European Physical Journal B 81:475

    Article  CAS  Google Scholar 

  47. Zhu X, Liu K, Lu Z, Xu Y, Qi S, Zhang G (2020) Physica E: Low-dimensional Systems and Nanostructures 117:113827

    Article  CAS  Google Scholar 

  48. Dai J, Yuan J, Giannozzi P (2009) Applied Physics Letters 95(23):232105

    Article  Google Scholar 

  49. Grimme S (2006) Journal of computational chemistry 27(15):1787

    Article  CAS  PubMed  Google Scholar 

  50. Delley B (1990) The Journal of chemical physics 92(1):508

    Article  CAS  Google Scholar 

  51. Andzelm J, Kölmel C, Klamt A (1995) The Journal of Chemical Physics 103(21):9312. https://doi.org/10.1063/1.469990

    Article  CAS  Google Scholar 

  52. Delley B (2000) The Journal of chemical physics 113(18):7756

    Article  CAS  Google Scholar 

  53. Kresse G, Joubert D (1999) Physical review b 59(3):1758

    Article  CAS  Google Scholar 

  54. Perdew JP, Burke K, Ernzerhof M (1996) Physical review letters 77(18):3865

    Article  CAS  PubMed  Google Scholar 

  55. Perdew JP, Wang Y (1992) Physical review B 45(23):13244

    Article  CAS  Google Scholar 

  56. Kohn W, Sham LJ (1965) Physical review 140(4A):A1133

    Article  Google Scholar 

  57. Delley B (2002) Physical Review B 66(15):155125

  58. Monkhorst HJ, Pack JD (1976) Physical review B 13(12):5188

  59. Lima KAL, Cunha WFd, Monteiro FF, Enders BG, MLP Jr, LAR Jr (2019) Journal of Molecular Modeling 25:1

  60. Paura ENC, da Cunha WF, de Oliveira Neto PH, e Silva GM, Martins JB, Gargano R (2013) The Journal of Physical Chemistry A 117(13):2854

  61. Paura EN, da Cunha WF, Martins JBL, e Silva GM, Roncaratti LF, Gargano R (2014) Rsc Advances 4(54):28249

  62. Lima IT, Gargano R, Guerini S, Paura EN (2019) New Journal of Chemistry 43(20):7778

    Article  CAS  Google Scholar 

  63. Mananghaya MR (2020) Adsorption 26(3):461

    Article  CAS  Google Scholar 

  64. Jiang T, Xiong R, Huang T, Li M, Zhang Y, Zhou H (2022) Diamond and Related Materials 130:109409

    Article  CAS  Google Scholar 

  65. Sanyal B, Eriksson O, Jansson U, Grennberg H (2009) Physical Review B 79(11):113409

    Article  Google Scholar 

  66. Timsorn K, Wongchoosuk C (2020) Materials Research Express 7(5):055005. https://doi.org/10.1088/2053-1591/ab8b8b

    Article  CAS  Google Scholar 

  67. Peng S, Cho K, Qi P, Dai H (2004) Chemical Physics Letters 387(4):271. https://doi.org/10.1016/j.cplett.2004.02.026. http://www.sciencedirect.com/science/article/pii/S0009261404002398

Download references

Acknowledgements

L.A.R.J acknowledges the financial support from Brazilian Research Council FAP-DF grants \(00193-00001247/2021-20\), \(00193-00000811/2021-97\), and \(00193-00000857/2021-14\), CNPq grants \(302236/2018-0\) and \(350176/2022-1\), and FAPDF-PRONEM grant \(00193.00001247/2021-20\). F.F.M acknowledges the financial support from FAP-DF grants \(00193.00001808/2022-71\). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 88887.691997/2022-00. M.L.P.J and L.A.R.J. acknowledge CENAPAD-SP for providing computational facilities. L.A.R.J. gratefully acknowledges the support from ABIN grant 08/2019. A.M.F. gratefully acknowledges the support from Conselho Nacional de Desenvolvimento Científico (CNPq), grants \(459961/2014-4\) and \(424950/2018-9\).

Funding

Brazilian Research Councils FAP-DF, CNPq, and CAPES.

Author information

Authors and Affiliations

Authors

Contributions

D.A.F.M., K. A. L., and F.F.M.: data curation, formal analysis, methodology, and writing—original draft preparation. M.L.P.J.: data curation, formal analysis, methodology and, funding acquisition. L.A.R.J. and A.M.F.: conceptualization, funding acquisition, and writing—reviewing and editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Marcelo L. Pereira Jr.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to the Topical Collection IX Symposium on Electronic Structure and Molecular Dynamics - IX SeedMol.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 1777 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, D.A.F., Lima, K.A., Monteiro, F.F. et al. Examining O\(_{2}\) adsorption on pristine and defective popgraphene sheets: A DFT study. J Mol Model 29, 328 (2023). https://doi.org/10.1007/s00894-023-05692-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05692-4

Keywords

Navigation