Skip to main content

Advertisement

Log in

First principles study on the electronic structure properties of Keggin polyoxometalates on Carbon substrates for solid-state devices

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Carbon has shown to give excellent performance in electrodes of energy storage devices, such as Li-ion batteries and supercapacitors. The grafting of polyoxometalates (POM) at carbon has scarcely been explored at the theoretical and experimental level, and the mechanism behind the chemical bonding between POM and carbon has not been fully understood. In order to give insights into these issues, an electronic structure study was carried out on the following POM systems adsorbed on carbon: PdMo12, RuNb12, SiMo12, PMo12 and SiW12. The prediction of the existence and chemical stability of PdMo12 and RuNb12 systems is reported for the first time. All systems were fully optimized with the nominal charges and also neutralized with counterions, as a benchmark to elucidate an optimal scheme that models the interaction in these nanocomposite systems. The POM/carbon attraction lies at about 250 pm in average, which may be addressed to a non-covalent bonding of the electrostatic-type, where the van der Waals contribution may also play a role. The density of states is evidently increased around the Fermi level in all POM/carbon systems. This may be due to the rising of new trajectories that ions may follow at the electrode of a solid-state device, such as a supercapacitor, giving as a result the strengthening of density current values and pseudocapacitive properties than those observed in pristine carbon systems. It was found that the SiWO12 and RuNb12 POM systems may be more feasible to be adsorbed on carbon substrates and may not require functional groups to allow POM retention. These systems represent potential candidates to be considered in nanohybrid electrodes for solid-state applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Franco AA, Liesse ML, Bessler WG (2016) Physical multiscale modeling and numerical simulation of electrochemical devices for energy conversion and storage. Springer, Berlin

    Book  Google Scholar 

  2. Qiu Y, Chen Y (2015) J Phys Chem C 119:23813

    Article  CAS  Google Scholar 

  3. Genovese M, Lian K (2015) Curr Opin Solid State Mater Sci 19:126

    Article  CAS  Google Scholar 

  4. Ji Y, Huang L, Hu J, Streb C, Song YF (2015) Energy Environ Sci 8:776

    Article  CAS  Google Scholar 

  5. Wang S, Li H, Li S, Liu F, Wu D, Feng X, Wu L (2013) Chem Eur J 19:10895

    Article  CAS  Google Scholar 

  6. Suárez-Guevara J, Ruiz V, Gómez-Romero P (2014) PCCP 16:20411

    Article  Google Scholar 

  7. Tessonnier J, Goubert-Renaudin S, Alia S, Yan Y, Barteau M (2013) Langmuir 29:393

    Article  CAS  Google Scholar 

  8. Cuentas-Gallegos A, López-Cortina S, Brousse T, Pacheco-Catalán D, Fuentes-Quezada E, Mosqueda H, Orozco-Gamboa G (2016) J Solid State Electrochem 20:67

    Article  CAS  Google Scholar 

  9. Long DL, Tsunashima R, Cronin L (2010) Angew Chem Int Ed 49:1736

    Article  CAS  Google Scholar 

  10. Wang X, Wang E, Lan Y, Hu C (2002) Electroanalysis 14:1116

    Article  CAS  Google Scholar 

  11. Liu H, He P, Li Z, Sun C, Shi L, Liu Y, Zhu G, Li J (2005) Electrochem Commun 7:1357

    Article  CAS  Google Scholar 

  12. Koper M (2013) Nat Chem 5:255

    Article  CAS  Google Scholar 

  13. Bianchini C, Shen P (2009) Chem Rev 109:4183

    Article  CAS  Google Scholar 

  14. Xu J, Cao X, Xia J, Gong S, Wang Z, Lu L (2016) Anal Chim Acta. doi:10.1016/j.aca.2016.06.033 (in press)

  15. Kawasaki N, Wang H, Nakanishi R, Hamanaka S, Kitaura R, Shinohara H, Yokoyama T, Yoshikawa H, Awaga K (2011) Angew Chem Int Ed 50:3471

    Article  CAS  Google Scholar 

  16. Azumi B, Ishihara T, Nishiguchi H, Takita Y (2002) Electrochemistry 70:869

    CAS  Google Scholar 

  17. Cuentas-Gallegos A, Gonzáles-Toledo M, Rincón M (2007) Rev Mex Fis S 53:91

    CAS  Google Scholar 

  18. Cuentas-Gallegos A, Martínez-Rosales R, Baibarac M, Gómez-Romero P, Rincón ME (2007) Electrochem Commun 9:2088

    Article  CAS  Google Scholar 

  19. Baeza-Rostro D, Cuentas-Gallegos A (2013) J New Mater Electrochem Syst 13:203

    Google Scholar 

  20. Cuentas-Gallegos A, Jiménez-Penaloza S, Baeza-Rostro D, German-García A (2010) J New Mater Electrochem Syst 13:369

    CAS  Google Scholar 

  21. Ruiz V, Suárez-Guevara J, Gómez-Romero P (2012) Electrochem Commun 24:35

    Article  CAS  Google Scholar 

  22. Suárez-Guevara J, Ruiz V, Gómez-Romero P (2014) J Mater Chem A 2:1014

    Article  Google Scholar 

  23. Garrigue P, Delville M, Labrugere C, Cloutet E, Kulesza P, Morand J, Kuhn A (2004) Chem Mater 16:2984

    Article  CAS  Google Scholar 

  24. Li H, Pang S, Wu S, Feng X, Mullen K, Bubeck C (2011) J Am Chem Soc 133:9423

    Article  CAS  Google Scholar 

  25. Xu D, Chen WL, Li JS, Sang XJ, Lu Y, Su ZM, Wang EB (2015) J Mater Chem 3:10174

    Article  CAS  Google Scholar 

  26. Wen S, Guan W, Kan Y, Yang G, Ma N, Yan L, Su Z, Chen G (2013) Phys Chem Chem Phys 15:9177

    Article  CAS  Google Scholar 

  27. Yang M, Gill-Choi B, Chul-Jung YKHS, Suk-Huh Y, Bok-Lee S (2014) Adv Funct Mater 24:7301

    Article  CAS  Google Scholar 

  28. Rozanska X, Sautet P, Delbecq F, Lefebvre F, Borshch S, Chermette H, Basset JM, Grinenval E (2011) Phys Chem Chem Phys 13:15955

    Article  CAS  Google Scholar 

  29. Aparicio-Angles X, Miro P, Clotet A, Bo C, Poblet JM (2012) Chem Sci 3:2020

    Article  CAS  Google Scholar 

  30. Muñiz J, Cuentas-Gallegos AK, Robles M, Valdez M (2016) Theor Chem Acc 135:92

    Article  Google Scholar 

  31. Ordejón P, Artacho E, Soler J (1996) Phys Rev B Condens Matter Mater Phys 53:R10441

    Article  Google Scholar 

  32. Sánchez-Portal D, Ordejón P, Artacho E, Soler JM (1997) Int J Quantum Chem 65:453

    Article  Google Scholar 

  33. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) J Phys Condens Matter 14:2745

    Article  CAS  Google Scholar 

  34. Miras HN, Yan J, Long DL, Cronin L (2012) Chem Soc Rev 41:7403

    Article  CAS  Google Scholar 

  35. Lopez X, Carbo J, Bo C, Poblet JM (2012) Chem Soc Rev 41:7537

    Article  CAS  Google Scholar 

  36. Gao S, Cao R, Bi W, Li X, Lin Z (2005) Microporous Mesoporous Mater 80:139

    Article  CAS  Google Scholar 

  37. Meng JX, Wang XL, Wang EB (2009) Transit Metal Chem 34:361

    Article  CAS  Google Scholar 

  38. Kostyrko T, Lambert CJ, Bulka BR (2010) Phys Rev B Condens Matter Mater Phys 81:085308

    Article  Google Scholar 

  39. Wen SZ, Yang GC, Yan LK, Lii HB, Su ZM (2012) ChemPhysChem 14:610

    Article  Google Scholar 

  40. Monkhorst H, Pack J (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  41. Blum V, Gehrke R, Hanke F, Havu P, Havu V, Ren X, Reuter K, Scheffler M (2009) Comput Phys Commun 180:2175

    Article  CAS  Google Scholar 

  42. Mulliken R (1955) J Chem Phys 23:1833

    Article  CAS  Google Scholar 

  43. Arellano J, Molina L, Rubio A, Alonso J (2000) J Chem Phys 112:8114

    Article  CAS  Google Scholar 

  44. Momma K, Izumi F (2011) J Appl Crystallogr 44:1272

    Article  CAS  Google Scholar 

  45. Merlet C, Rotenberg B, Madden PA, Taberna PL, Simon P, Gogotsi Y, Salanne M (2012) Nat Mater 11:306

    Article  CAS  Google Scholar 

  46. Mejía-Mendoza LM, Valdéz-González M, Muñiz J, Santiago U, Cuentas-Gallegos AK, Robles M (2016) (to be published)

  47. Liu S, Wang C, Zhai H, Li D (2003) J Mol Struct 654:215

    Article  CAS  Google Scholar 

  48. Hirshfeld FL (1977) Theor Chem Acta 44:129

    Article  CAS  Google Scholar 

  49. Fonseca-Guerra C, Handgraaf JW, Baerends EJ, Bickelhaupt FM (2003) J Comput Chem 25:189

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge the support given by Cátedras-CONACYT (Consejo Nacional de Ciencia y Tecnología) under Project No. 1191, DGTIC (Dirección General de Cómputo y de Tecnologías de Información y Comunicación) and the Supercomputing Department of Universidad Nacional Autónoma de México for the computing resources under Project No. SC16-1-IR-29. C.C. wants to acknowledge the financial support given by CONACYT with the Ph.D. Scholarship No. 539402. A.M.O. would like to acknowledge the financial support given by Consejo de Ciencia y Tecnología del Estado de Chiapas (COCYTECH) under Project No. 14318. The authors also acknowledge the National Supercomputer Center (CNS) of IPICYT, A.C. for supercomputer facilities, and those are: Thubat-Kaal. The authors would like to acknowledge the financial support given by DGAPA (Dirección General de Asuntos del Personal Académico) under Project No. IN112414. We also thank LCC Tiare Robles Bonilla for technical assistance in the development of Python scripts for data management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Muñiz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 32584 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñiz, J., Celaya, C., Mejía-Ozuna, A. et al. First principles study on the electronic structure properties of Keggin polyoxometalates on Carbon substrates for solid-state devices. Theor Chem Acc 136, 26 (2017). https://doi.org/10.1007/s00214-017-2049-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2049-3

Keywords

Navigation