Skip to main content
Log in

Transition metal (X = Mn, Fe, Co, Ni, Cu, Zn)-doped graphene as gas sensor for CO2 and NO2 detection: a molecular modeling framework by DFT perspective

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

In this research, CO2 and NO2 adsorption on doped nanographene (NG) sheets with transition metals (Fe, Ni, Zn) and (Mn, Co, Cu), respectively, have been applied for scavenging of these toxic gases as the environmental pollutants. The values of changes of atomic charge density have illustrated a more significant charge transfer for Ni-doped C-NG through CO2 adsorption and a more remarkable charge transfer for Co-doped C-NG through NO2 adsorption. The data of NMR spectroscopy has depicted several fluctuations around the graph of Zn-doped on the nanographene surface. The thermodynamic results from IR spectroscopy have indicated that \(\Delta {G}_{\textrm{ads},\textrm{NO}2\to \textrm{TM}@\textrm{C}-\textrm{NG}}^{\textrm{o}}\) values are almost similar for doped metal transitions of Mn, Co, and Cu on the C-NG nanosheet, while \(\Delta {G}_{\textrm{ads},\kern0.5em \textrm{CO}2\to \textrm{TM}@\textrm{C}-\textrm{NG}}^{\textrm{o}}\) has the largest gap of Gibbs free energy adsorption with dipole moment.

Methods

The Langmuir adsorption model with a three-layered ONIOM using CAM-B3LYP functional accompanying LANL2DZ, EPR-III and 6-31 + G (d,p) basis sets due to Gaussian 16 revision C.01 program on the complexes of CO2 → (Fe, Ni, Zn) and NO2 → (Mn, Co, Cu) doped on the C-NG has been accomplished. Then, NMR and IR spectroscopy, nuclear quadrupole resonance, and natural bond orbital analysis have been accomplished for evaluating chemical shielding tensors, thermodynamic properties, electric potential, and occupancy fluctuation through bond orbitals, respectively. In addition, frontier orbitals of LUMO, HOMO, and also a series of chemical reactivity parameters have been calculated. Finally, time-dependent-DFT method due to UV-VIS spectrums has been accomplished to discern the low-lying excited states of CO2 and NO2 adsorption on the (Fe, Ni, Zn) and (Mn, Co, Cu), respectively, doped C-NG sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

It is not applicable.

References

  1. Su Y, Wang J, Wang B, Yang T, Yang B, Xie G, Zhou Y, Zhang S, Tai H, Cai Z et al (2020) Alveolus-inspired active membrane sensors for self-powered wearable chemical sensing and breath analysis. ACS Nano 14:6067–6075. https://doi.org/10.1021/acsnano.0c01804

    Article  CAS  PubMed  Google Scholar 

  2. Ma D, Zhang J, Li X, He C, Lu Z, Lu Z, Lu Z, Yang Z, Wang Y (2018) C3N monolayers as promising candidates for NO2 sensors. Sens Actuators B Chem 266:664–673. https://doi.org/10.1016/j.snb.2018.03.159

    Article  CAS  Google Scholar 

  3. Pacheco M, Pacheco J, Valdivia R, Santana A, Tu X, Mendoza D, Frias H, Medina L, Macias J (2017) Green applications of carbon nanostructures produced by plasma techniques. MRS Adv 2:2647–2659

    Article  CAS  Google Scholar 

  4. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  5. Nasibulin AG, Pikhitsa PV, Jiang H, Brown DP, Krasheninnikov AV, Anisimov AS, Queipo P, Moisala A, Gonzalez D, Lientschnig G et al (2007) A novel hybrid carbon material. Nat Nanotechnol 2:156–161

    Article  CAS  PubMed  Google Scholar 

  6. Moisala A, Nasibulin AG, Shandakov SD, Jiang H, Kauppinen EI (2005) On-line detection of single-walled carbon nanotube formation during aerosol synthesis methods. Carbon 43:2066–2074

    Article  CAS  Google Scholar 

  7. Delgado JL, Herranz M, Martín N (2008) The nano-forms of carbon. J Mater Chem 18:1417

    Article  CAS  Google Scholar 

  8. Falcao EH, Wudl F (2007) Carbon allotropes: beyond graphite and diamond. J Chem Technol Biotechnol 82:524–531

    Article  CAS  Google Scholar 

  9. Langenhorst F, Campione M (2019) Ideal and real structures of different forms of carbon, with some remarks on their geological significance. J Geol Soc 176:337–347

    Article  CAS  Google Scholar 

  10. Louis H, Patrick M, Amodu IO, Benjamin I, Ikot IJ, Iniama GE, Adeyink AS (2023) Sensor behavior of transition-metals (X = Ag, Au, Pd, and Pt) doped Zn11-X-O12 nanostructured materials for the detection of serotonin. Mater Today Commun 34:105048. https://doi.org/10.1016/j.mtcomm.2022.105048

    Article  CAS  Google Scholar 

  11. Odey DO, Edet HO, Louis H, Gber TE, Nwagu AD, Adalikwu SA, Adeyinka AS (2023) Heteroatoms (B, N, and P) doped on nickel-doped graphene for phosgene (COCl2) adsorption: insight from theoretical calculations. Mater Today Sustain 21:100294. https://doi.org/10.1016/j.mtsust.2022.100294

    Article  Google Scholar 

  12. Louis H, Charlie DE, Amodu IO, Benjamin I, Gber TE, Agwamba EC, Adeyinka AS (2022) Probing the reactions of thiourea (CH4N2S) with metals (X = Au, Hf, Hg, Ir, Os, W, Pt, and Re) anchored on fullerene surfaces (C59X). ACS Omega 7(39):35118–35135. https://doi.org/10.1021/acsomega.2c04044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee SW, Lee W, Hong Y, Lee G, Yoon DS (2018) Recent advances in carbon material-based NO2 gas sensors. Sens Actuators B Chem 255:1788–1804. https://doi.org/10.1016/j.snb.2017.08.203

    Article  CAS  Google Scholar 

  14. Chatterjee SG, Chatterjee S, Ray AK, Chakraborty AK (221) Graphene–metal oxide nanohybrids for toxic gas sensor: A review. Sens Actuators B Chem:1170–1181

  15. Xiao Z, Kong LB, Ruan S, Li X, Yu S, Li X, Jiang Y, Yao Z, Ye S, Wang C et al (2018) Recent development in nanocarbon materials for gas sensor applications. Sens Actuators B Chem 274:235–267. https://doi.org/10.1016/j.snb.2018.07.040

    Article  CAS  Google Scholar 

  16. Monajjemi M, Baie MT, Mollaamin F (2010) Interaction between threonine and cadmium cation in [Cd(Thr)] (n = 1–3) complexes: density functional calculations. Russ Chem Bull 59:886–889

    Article  CAS  Google Scholar 

  17. Khalili Hadad B, Mollaamin F, Monajjemi M (2011) Biophysical chemistry of macrocycles for drug delivery: A theoretical study. Russ Chem Bull 60:238–241

    Article  CAS  Google Scholar 

  18. Monajjemi M, Khaleghian M, Tadayonpour N, Mollaamin F (2010) The effect of different solvents and temperatures on stability of single-walled carbon nanotube: A QM/MD study. Int J Nanosci 09:517–529

    Article  CAS  Google Scholar 

  19. Bakhshi K, Mollaamin F, Monajjemi M (2011) Exchange and correlation effect of hydrogen chemisorption on nano V(100) surface: a DFT study by generalized gradient approximation (GGA). J Comput Theor Nanosci 8:763–768. https://doi.org/10.1166/jctn.2011.1750

    Article  CAS  Google Scholar 

  20. Mollaamin F, Ilkhani A, Sakhaei N, Bonsakhteh B, Faridchehr A, Tohidi S, Monajjemi M (2015) Thermodynamic and solvent effect on dynamic structures of nano bilayer-cell membrane: hydrogen bonding study. J Comput Theor Nanosci 12:3148–3154. https://doi.org/10.1166/jctn.2015.4092

    Article  CAS  Google Scholar 

  21. Adanna D, Nwagu AD, Louis H, Edet HO, Benjamin I, Osabor VN, Adeyinka AS (2023) Computational study on nickel doped encapsulated Mg, K, Ca on pristine C24 nanocage for gas sensing applications. Mater Sci Semicond Process 157:107334. https://doi.org/10.1016/j.mssp.2023.107334

    Article  CAS  Google Scholar 

  22. Mohammadi MD, Abbas F, Louis H, Mathias GE, Unimuke TO (2022) Trapping of CO, CO2, H2S, NH3, NO, NO2, and SO2 by polyoxometalate compound. Comput Theor Chem 1215:113826. https://doi.org/10.1016/j.comptc.2022.113826

    Article  CAS  Google Scholar 

  23. Louis H, Egemonye TGC, Unimuke TO, Inah BE, Edet HO, Eno EA, Adalikwu SA, Adeyinka AS (2022) Detection of carbon, sulfur, and nitrogen dioxide pollutants with a 2D Ca12O12 nanostructured Material. ACS Omega 7(39):34929–34943. https://doi.org/10.1021/acsomega.2c03512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Louis H, Amodu IO, Unimuke TO, Gber TE, Isang BB, Adeyinka AS (2022) Modeling of Ca12O12, Mg12O12, and Al12N12 nanostructured materials as sensors for phosgene (Cl2CO). Mater Today Commun 32:103946. https://doi.org/10.1016/j.mtcomm.2022.103946

    Article  CAS  Google Scholar 

  25. Mollaamin F, Monajjemi M (2022) Molecular modelling framework of metal-organic clusters for conserving surfaces: Langmuir sorption through the TD-DFT/ONIOM approach. Mol Simul 49:365–376. https://doi.org/10.1080/08927022.2022.2159996

    Article  CAS  Google Scholar 

  26. Mollaamin F, Shahriari S, Monajjemi M, Khalaj Z (2022) Nanocluster of aluminum lattice via organic inhibitors coating: a study of Freundlich adsorption. J Clust Sci:1–16. https://doi.org/10.1007/s10876-022-02335-1

  27. Hanaor DAH, Ghadiri M, Chrzanowski W, Gan Y (2014) Scalable surface area characterization by electrokinetic analysis of complex anion adsorption (PDF). Langmuir 30(50):15143–15152. https://doi.org/10.1021/la503581e

    Article  CAS  PubMed  Google Scholar 

  28. Boyd A, Dube I, Fedorov G, Paranjape M, Barbara P (2014) Gas sensing mechanism of carbon nanotubes: from single tubes to high-density networks. Carbon 69:417–423

    Article  CAS  Google Scholar 

  29. Zhao J, Buldum A, Han J, Lu JP (2002) Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology 13:195–200

    Article  CAS  Google Scholar 

  30. Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) ONIOM: A multilayered integrated MO + MM method for geometry optimizations and single point energy predictions. A test for Diels−Alder reactions and Pt(P(t-Bu)3)2 + H2 oxidative addition. J Phys Chem 100(50):19357–19363. https://doi.org/10.1021/jp962071j

    Article  CAS  Google Scholar 

  31. Brandt F, Jacob CR (2022) Systematic QM region construction in QM/MM calculations based on uncertainty quantification. J Chem Theory Comput 18(4):2584–2596. https://doi.org/10.1021/acs.jctc.1c01093

    Article  CAS  PubMed  Google Scholar 

  32. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  33. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  34. Grimme S, Antony J, Ehrlich S, Krieg H (2010). J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  35. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  36. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  37. Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys. 54:724–728

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV et al (2016) Gaussian 16, Revision C.01. Gaussian, Inc., Wallingford CT

    Google Scholar 

  39. Fry RA, Kwon KD, Komarneni S, Kubicki JD, Mueller KT (2006) Solid-state NMR and computational chemistry study of mononucleotides adsorbed to alumina. Langmuir 22:9281–9286

    Article  CAS  PubMed  Google Scholar 

  40. Smith JAS (1971) Nuclear quadrupole resonance spectroscopy. J Chem Educ 48:39–41

    Article  CAS  Google Scholar 

  41. Garroway AN (2003) Appendix K: Nuclear quadrupole resonance, by, Naval Research Laboratory. In: Jacqueline MacDonald JR (ed) Lockwood: Alternatives for landmine detection. Report MR-1608. Rand Corporation

    Google Scholar 

  42. Poleshchuck OK, Kalinna EL, Latosinska JN, Koput J (2001). J Mol Struct Theochem 547:233–243

    Article  Google Scholar 

  43. Young HA, Freedman RD (2012) Sears and Zemansky’s University Physics with Modern Physics13th edn. Addison-Wesley, Boston, p 754

    Google Scholar 

  44. Cortés-Arriagada D, Villegas-Escobar N, Ortega DE (2018) Fe-doped graphene nanosheet as an adsorption platform of harmful gas molecules (CO, CO2, SO2 and H2S), and the co-adsorption in O2 environments. Appl Surf Sci 427, Part B:227–236. https://doi.org/10.1016/j.apsusc.2017.08.216

    Article  CAS  Google Scholar 

  45. Tahan A, Mollaamin F, Monajjemi M (2009) Thermochemistry and NBO analysis of peptide bond: Investigation of basis sets and binding energy. Russ J Phys Chem A 83:587–597. https://doi.org/10.1134/S003602440904013X

    Article  CAS  Google Scholar 

  46. Kohn W, Becke AD, Parr RG (1996) Density functional theory of electronic structure. J Phys Chem 100:12974–12980. https://doi.org/10.1021/jp960669l

    Article  CAS  Google Scholar 

  47. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc. 105:7512–7516. https://doi.org/10.1021/ja00364a005

    Article  CAS  Google Scholar 

  48. Politzer P, Abu–Awwad FA (1998) Comparative analysis of Hartree-Fock and Kohn-Sham orbital energies. Theor Chem Acc 99:83–87. https://doi.org/10.1007/s002140050307

    Article  CAS  Google Scholar 

  49. Aihara J (1999) Reduced HOMO−LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J Phys Chem A 103(37):7487–7495. https://doi.org/10.1021/jp990092i

    Article  CAS  Google Scholar 

  50. Silverstein RM, Bassler GC, Morrill TC (1981) Spectrometric identification of organic compounds5th edn. John Wiley & Sons, Inc., New York

    Google Scholar 

Download references

Acknowledgements

In successfully completing this paper and its research, the authors are grateful to Kastamonu University for their support through the library, the laboratory, and scientific websites.

Author information

Authors and Affiliations

Authors

Contributions

Fatemeh Mollaamin: conceptualization and idea, methodology, software, validation, formal analysis, investigation, data curation, writing—original draft preparation, visualization, supervision, project administration. Majid Monajjemi: methodology, software, formal analysis, investigation, data curation, writing—review and editing, visualization, resources.

Corresponding author

Correspondence to Fatemeh Mollaamin.

Ethics declarations

Ethics approval

The authors consent to participate and publish the data.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mollaamin, F., Monajjemi, M. Transition metal (X = Mn, Fe, Co, Ni, Cu, Zn)-doped graphene as gas sensor for CO2 and NO2 detection: a molecular modeling framework by DFT perspective. J Mol Model 29, 119 (2023). https://doi.org/10.1007/s00894-023-05526-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05526-3

Keywords

Navigation