Skip to main content

Advertisement

Log in

Hollow polyhedral structures and properties of Ag2n-1Sn (n = 2–11) clusters: A theoretical study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

The structures of Ag2n-1Sn (n = 2–11) clusters are obtained by the combination of genetic algorithm (GA) and density functional theory (DFT). All the global minimum structures prefer hollow polyhedral structures, in which S–Ag-S element, triangular Ag3S3 and tetragonal Ag4S4 units present to stabilize the structures. The S atoms in the structures appear in μ3-S or μ4-S form. Adiabatic and vertical electron affinities of the clusters have been obtained, which reveals that they increases as cluster size. Stability analysis shows that Ag9S5 and Ag19S10 have special stability. The HOMO, LUMO orbitals of the clusters are obtained and the orbital components of them are calculated. The HOMO orbitals are mainly from the p orbitals of S atoms, whereas the s, p and d orbitals of Ag atoms contribute much bigger than the p orbitals of S atoms for LUMO orbitals. The orbital delocalization indexes (ODI) of the HOMOs and LUMOs are calculated, and the small ODIs of the HOMOs and LUMOs for n = 4–10 reveal that these orbitals are highly delocalized. By studying the projected density of states and molecular orbitals of Ag9S5 and Ag19S10 clusters, it is found that their molecular orbitals have superatomic properties. Superatomic properties play an important role in stabilizing clusters.

Methods

This work used combined genetic algorithm and density functional theory (GA-DFT), and PBE0/Lanl2tz(Ag)/6-311G(d,p)(S) method to optimize the structures. Gaussian 16 program, Gauss view 6.0.16 program and Multiwfn 3.8 code are the softwares used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data set generated and analyzed during this study is included in this paper and its supplementary information file.

References

  1. Ersan F (2019) Single-layer Ag6S2: First principles investigation of a new two-dimensional direct bandgap semiconductor. Comp Mater Sci 163:278–281. https://doi.org/10.1016/j.commatsci.2019.03.053

    Article  CAS  Google Scholar 

  2. Han LL, Kuang XY, Ding LP, Shao P, Jin YY, Li HH (2014) Probing the geometries, relative stabilities, and electronic properties of neutral and anionic AgnSm (n + m ≤ 7) clusters. J Mol Model 20(5):2252. https://doi.org/10.1007/s00894-014-2252-2

    Article  CAS  PubMed  Google Scholar 

  3. Li YF, Li Y, Li Y, Tan JJ, Li HL (2016) Structural and electronic properties of small silver-sulfur clusters: a density functional study. Phys B 499:29–37. https://doi.org/10.1016/j.physb.2016.07.003

    Article  CAS  Google Scholar 

  4. Lv L, Shen Y, Liu J, Gao X, Zhou M, Zhang Y, Meng X, Yang X, Gong D, Zheng Y, Zhou Z (2022) MX (M=Au, Ag; X=S, Se, Te) monolayers: Promising photocatalysts for oxygen evolution reaction with excellent light capture capability. Appl Surf Sci 600:154055. https://doi.org/10.1016/j.apsusc.2022.154055

    Article  CAS  Google Scholar 

  5. Huang WJ, Liu ZY, Zheng LS (1998) Laser generation and mass distribution of AgnSm± and AunSm±. Acta Chim Sin 56:200–207

    CAS  Google Scholar 

  6. León-Velázquez MS, Irizarry R, Castro-Rosario ME (2010) Nucleation and growth of silver sulfide nanoparticles. J Phys Chem C 114(13):5839–5849. https://doi.org/10.1021/jp911238a

    Article  CAS  Google Scholar 

  7. Kluska K, Peris-Díaz MD, Płonka D, Moysa A, Dadlez M, Deniaud A, Bal W, Krężel A (2020) Formation of highly stable multinuclear AgnSn clusters in zinc fingers disrupts their structure and function. Chem Commun 56(9):1329–1332. https://doi.org/10.1039/C9CC09418K

    Article  CAS  Google Scholar 

  8. Kryukov AI, Stroyuk AL, Zin’chuk NN, Korzhak AV, Kuchmii SY (2004) Optical and catalytic properties of Ag2S nanoparticles. J Mol Catal A-Chem 221(1):209–221. https://doi.org/10.1016/j.molcata.2004.07.009

    Article  CAS  Google Scholar 

  9. Nan ZA, Xiao Y, Liu XY, Wang T, Cheng XL, Yang Y, Lei Z, Wang QM (2019) Monitoring the growth of Ag-S clusters through crystallization of intermediate clusters. Chem Commun 55(47):6771–6774. https://doi.org/10.1039/C9CC03533H

    Article  CAS  Google Scholar 

  10. Pedicini AF, Reber AC, Khanna SN (2013) The effect of sulfur covalent bonding on the electronic shells of silver clusters. J Chem Phys 139(16):164317. https://doi.org/10.1063/1.4827091

    Article  CAS  PubMed  Google Scholar 

  11. Ni B, Kramer JR, Werstiuk NH (2003) An ab initio and AIM study on the molecular structure and stability of small CuxSy clusters. J Phys Chem A 107(42):8949–8954. https://doi.org/10.1021/jp035513h

    Article  CAS  Google Scholar 

  12. Pei Y, Shao N, Li H, Jiang DE, Zeng XC (2011) Hollow polyhedral structures in small gold-sulfide clusters. ACS Nano 5(2):1441–1449. https://doi.org/10.1021/nn103217z

    Article  CAS  PubMed  Google Scholar 

  13. Steudel Y, Wong MW, Steudel R (2005) Coordination of Li+, Ca+, V+, and Cu+ to the molecules S8 and S4-a computational study. Eur J Inorg Chem 12:2514–2525. https://doi.org/10.1002/ejic.200401017

    Article  CAS  Google Scholar 

  14. Wen H, Liu YR, Huang T, Xu KM, Zhang WJ, Huang W, Wang LS (2013) Observation of linear to planar structural transition in sulfur-doped gold clusters: AuxS (x=2–5). J Chem Phys 138(17):174303. https://doi.org/10.1063/1.4802477

    Article  CAS  PubMed  Google Scholar 

  15. Wang YY, Ding XL, Israel Gurti J, Chen Y, Li W, Wang X, Wang WJ, Deng JJ (2021) Non-dissociative activation of chemisorbed dinitrogen on one or two vanadium atoms supported by a Mo6S8 cluster. ChemPhysChem 22(15):1645–1654. https://doi.org/10.1002/cphc.202100195

    Article  CAS  PubMed  Google Scholar 

  16. Tian ZM, Song CF, Wang C, Xu HJ, Guan QM (2020) Structures and properties of [Ag(Ag2S)n]+ clusters with n = 1–9: a density functional theory study. J Nanopart Res 22(6):161. https://doi.org/10.1007/s11051-020-04880-0

    Article  CAS  Google Scholar 

  17. Cui WD, Zhao X, Peng BX, Shi Y, Gao Z, Zhu QH, Kong FA (1999) Formation of ternary Ag/Au/S clusters and sulfur-plus-gold sensitization in photographic process. Acta Chim Sin 57(11):1179–1184. http://siocjournal.cn/Jwk_hxxb/EN/Y1999/V57/I11/1179

  18. Nakajima A, Kawamata H, Hayase T, Negishi Y, Kaya K (1997) Photoelectron spectroscopy of transition metal-sulfur cluster anions. Z Phys D Atoms Mol Clusters 40(1):17–21. https://doi.org/10.1007/s004600050148

    Article  CAS  Google Scholar 

  19. Wu Z, Jiang D-e, Lanni E, Bier ME, Jin R (2010) Sequential observation of AgnS4 (1 ≤n≤ 7) Gas phase clusters in MS/MS and prediction of their structures. J Phys Chem Lett 1(9):1423–1427. https://doi.org/10.1021/jz100317w

    Article  CAS  Google Scholar 

  20. Ei-Nakat J, Dance I, Fisher K, Willet G (1991) Gas-phase silver chalcogenide ions investigated by laser-ablation Fourier transform ion cyclotron resonance mass spectrometry. J Chem Soc Chem Commun 11:746–748. https://doi.org/10.1039/C39910000746

    Article  Google Scholar 

  21. Huang WJ, Liu ZY, Huang RB, Zheng LS (1998) Laser generation and mass distribution of AgnSm and AunSm. Aata Chim Sin 56(2):200–207

    CAS  Google Scholar 

  22. Tian ZM, Song CF (2020) Theorectical study on the structure and growth mechanisms of Ag-rich clusters: Ag(Ag2S)n and Ag2(Ag2S)n (n=1-6). J Struct Chem 61(10):1541–1550. https://doi.org/10.1134/S0022476620100066

    Article  CAS  Google Scholar 

  23. Tian ZM, Song CF, Wang C (2022) First principle study on the structures and properties of Agm(Ag2S)6 (m = 3–12) clusters. J Nanopart Res 24(6):104. https://doi.org/10.1007/s11051-022-05491-7

    Article  CAS  Google Scholar 

  24. Song CF, Tian ZM (2019) Systematic study on the structures and properties of (Ag2S)n (n = 1–8) clusters. J Mol Model 25(10):310. https://doi.org/10.1007/s00894-019-4191-4

    Article  CAS  PubMed  Google Scholar 

  25. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82(1):299–310. https://doi.org/10.1063/1.448975

    Article  CAS  Google Scholar 

  26. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  27. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91(14):146401. https://doi.org/10.1103/PhysRevLett.91.146401

    Article  CAS  PubMed  Google Scholar 

  28. McLean AD, Chandler GS (1980) Contracted gaussian basis sets for molecular calculations. I. second row atoms, Z=11–18. J Chem Phys 72(10):5639–5648. https://doi.org/10.1063/1.438980

    Article  CAS  Google Scholar 

  29. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G, Nakatsuji H et al (2016) Gaussian 16; Gaussian, Inc.: Wallingford, CT, USA

  30. Dennington R, Keith TA, Millam JM (2016) GaussView 6.0. 16. Semichem Inc: Shawnee Mission, KS, USA

  31. Lu T, Chen F (2012) Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  32. Walter M, Akola J, Lopez-Acevedo O, Jadzinsky PD, Calero G, Ackerson CJ, Whetten RL, Grönbeck H, Häkkinen H (2008) A unified view of ligand-protected gold clusters as superatom complexes. P Natl Acad Sci USA 105(27):9157–9162. https://doi.org/10.1073/pnas.0801001105

    Article  Google Scholar 

Download references

Funding

This paper was supported by the teaching research project of Fuyang Normal University (2020JYXM45), research start-up fund for Dr. Zhimei Tian (2018kyqd0022) and Anhui Provincial Scientific Research Preparation Plan Project (2022AH040201).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the study. Data calculation, data analysis and figures were completed by Zhimei Tian, Chongfu Song, Chang Wang and Hai Wu. The first draft of the manuscript was written by Zhimei Tian, and all the authors commented on the previous versions of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Chongfu Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 739 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Z., Song, C., Wang, C. et al. Hollow polyhedral structures and properties of Ag2n-1Sn (n = 2–11) clusters: A theoretical study. J Mol Model 29, 105 (2023). https://doi.org/10.1007/s00894-023-05524-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05524-5

Keywords

Navigation