Skip to main content
Log in

Unveiling the theoretical aspects of superelectrophilic activation in an inverse demand Diels-Alder reaction

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The present computational study using B3LYP functional and 6-31+G(d) basis set has been accomplished to investigate the mechanism of the inverse demand Diels-Alder reaction between pyridyl imine and propene. The highly charged dicationic superelectrophilic diene with exceptionally low-lying LUMO makes the cycloaddition reaction with propene more favorable by significantly lowering the activation energy. The Wiberg bond indices are calculated in accordance with the formation and breaking processes of bonds. The synchronicity concept is also utilized to explain the global nature of the reaction. A potential outcome of this investigation is the utilization of propene as a C2 building block in the industry.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the manuscript and its Supplementary Information.

References

  1. Johannsenand M, Jørgensen KA (1998) Allylic amination. Chem Rev 98:1689–1708. https://doi.org/10.1021/CR970343O

    Article  CAS  Google Scholar 

  2. Müller TE, Beller M (1998) Metal-initiated amination of alkenes and alkynes. Chem Rev 98:675–703. https://doi.org/10.1021/CR960433D

    Article  CAS  PubMed  Google Scholar 

  3. Halfen J (2005) Recent advances in metal-mediated carbon-nitrogen bond formation reactions: aziridination and amidation. Curr Org Chem 9:657–669. https://doi.org/10.2174/1385272053765024

    Article  CAS  Google Scholar 

  4. Liang C, Collet F, Robert-Peillard F et al (2008) Toward a synthetically useful stereoselective C-H amination of hydrocarbons. J Am Chem Soc 130:343–350. https://doi.org/10.1021/JA076519D

    Article  CAS  PubMed  Google Scholar 

  5. Wang H, Wang Y, Peng C et al (2010) A direct intramolecular C−H amination reaction cocatalyzed by copper(II) and iron(III) as part of an efficient route for the synthesis of pyrido[1,2- a ]benzimidazoles from N -aryl-2-aminopyridines. J Am Chem Soc 132:13217–13219. https://doi.org/10.1021/ja1067993

    Article  CAS  PubMed  Google Scholar 

  6. Masters K-S, Rauws TRM, Yadav AK et al (2011) On the importance of an acid additive in the synthesis of pyrido[12,-a]benzimidazoles by direct copper-catalyzed amination. Chem–A Eur J 17:6315–6320. https://doi.org/10.1002/CHEM.201100574

    Article  CAS  Google Scholar 

  7. Maes J, Rauws TRM, Maes BUW (2013) Synthesis of C8–N9 annulated purines by iron-catalyzed C-H amination. Chemistry 19:9137–9141. https://doi.org/10.1002/CHEM.201301248

    Article  CAS  PubMed  Google Scholar 

  8. Vuong H, Dash BP, Nilsson Lill SO, Klumpp DA (2018) Diels-Alder reactions with ethylene and superelectrophiles. Org Lett 20:1849–1852. https://doi.org/10.1021/ACS.ORGLETT.8B00367

    Article  CAS  PubMed  Google Scholar 

  9. Olah GA, Germain A, Lin HC, Forsyth DA (2002) Electrophilic reactions at single bonds. XVIII. Indication of protosolvated de facto substituting agents in the reactions of alkanes with acetylium and nitronium ions in superacidic media. J Am Chem Soc 97:2928–2929. https://doi.org/10.1021/JA00843A067

    Article  Google Scholar 

  10. Olah GA, Klumpp DA (2008) Superelectrophiles and their chemistry. Wiley-Interscience, p 301

    Google Scholar 

  11. Suzuki T, Ohwada T, Shudo K (1997) Superacid-catalyzed electrocyclization of 1-phenyl-2-propen-1-ones to 1- indanones. Kinetic and theoretical studies of electrocyclization of oxonium- carbenium dications. J Am Chem Soc 119:6774–6780. https://doi.org/10.1021/JA971100G

    Article  CAS  Google Scholar 

  12. Olah GA, Koltunov KY, Prakash GS, Rasul G (2004) Reactions of 2-, 3-, and 4-quinolinols with cyclohexane and benzene in superacids. Heterocycles 62:757. https://doi.org/10.3987/com-03-s(p)74

    Article  Google Scholar 

  13. Domingo LR, Ríos-Gutiérrez M, Emamian S (2016) Understanding the stereoselectivity in Brønsted acid catalysed Povarov reactions generating cis/trans CF3-substituted tetrahydroquinolines: a DFT study. RSC Adv 6:17064–17073. https://doi.org/10.1039/c5ra27650k

    Article  CAS  Google Scholar 

  14. Ríos-Gutiérrez M, Layeb H, Domingo LR (2015) A DFT study of the mechanism of Brønsted acid catalysed Povarov reactions. Tetrahedron 71:9339–9345. https://doi.org/10.1016/J.TET.2015.10.012

    Article  Google Scholar 

  15. Kouznetsov VV (2009) Recent synthetic developments in a powerful imino Diels-Alder reaction (Povarov reaction): application to the synthesis of N-polyheterocycles and related alkaloids. Tetrahedron 65:2721–2750. https://doi.org/10.1016/J.TET.2008.12.059

    Article  CAS  Google Scholar 

  16. Morizur J-P, Mercier J, Sarraf M (1982) 2-substituted-2,3-dihydro-4H-pyrans: competition between ‘retro Diels-Alder’ fragmentation and substituent loss. Org Mass Spectrom 17:327–330. https://doi.org/10.1002/OMS.1210170708

    Article  CAS  Google Scholar 

  17. Derrick PJ, Åsbrink L, Edqvist O et al (1971) Rydberg series in small molecules: X. Photoelectron spectroscopy and electronic structure of furan. Int J Mass Spectrom Ion Phys 6:161–175. https://doi.org/10.1016/0020-7381(71)80001-3

    Article  CAS  Google Scholar 

  18. Hunter EPL, Lias SG, Hunter EPL, Lias SG (1998) Evaluated gas phase basicities and proton affinities of molecules: an update. JPCRD 27:413–656. https://doi.org/10.1063/1.556018

    Article  CAS  Google Scholar 

  19. Dewar MJS, Haselbach E, Worley SD (1970) Calculated and observed ionization potentials of unsaturated polycyclic hydrocarbons; calculated heats of formation by several semiempirical s. c. f. m.o. methods. Proc R Soc London A Math Phys Sci 315:431–442. https://doi.org/10.1098/RSPA.1970.0053

    Article  CAS  Google Scholar 

  20. Watanabe K, Nakayama T, Mottl J (1962) Ionization potentials of some molecules. J Quant Spectrosc Radiat Transf 2:369–382. https://doi.org/10.1016/0022-4073(62)90023-7

    Article  Google Scholar 

  21. Bock H, Seidl H (1968) d-orbitaleffekte in silizium-substituierten π-elektronensystemen VI. Spektroskopische untersuchungen an alkyl- und silyläthylenen. J Organomet Chem 13:87–102. https://doi.org/10.1016/S0022-328X(00)88859-2

    Article  CAS  Google Scholar 

  22. Traeger JC (1984) A study of the allyl cation thermochemistry by photoionization mass spectrometry. Int J Mass Spectrom Ion Process 58:259–271. https://doi.org/10.1016/0168-1176(84)80034-8

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, et al (2016) Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT

  24. Lee C, Yang W, Parr RG (1988) Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B: Condens Matter Mater Phys 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

  25. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377. https://doi.org/10.1063/1.464304

    Article  CAS  Google Scholar 

  26. Becke AD (1993) Densityfunctional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  27. Petersson GA, Bennett A, Tensfeldt TG et al (1988) A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J Chem Phys 89:2193–2218. https://doi.org/10.1063/1.455064

    Article  CAS  Google Scholar 

  28. Petersson GA, Al-Laham MA (1998) A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J Chem Phys 94:6081. https://doi.org/10.1063/1.460447

    Article  Google Scholar 

  29. Frisch MJ, Pople JA, Binkley JS (1998) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265. https://doi.org/10.1063/1.447079

    Article  Google Scholar 

  30. Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comput Chem 17:49–56

    Article  CAS  Google Scholar 

  31. Gonzalez C, Bernhard Schlegel H (1998) An improved algorithm for reaction path following. J Chem Phys 90:2154. https://doi.org/10.1063/1.456010

    Article  Google Scholar 

  32. Fukui K (1981) The path of chemical reactions - the IRC approach. Acc Chem Res 14:363–368. https://doi.org/10.1021/AR00072A001/ASSET/AR00072A001.FP.PNG_V03

    Article  CAS  Google Scholar 

  33. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001. https://doi.org/10.1021/JP9716997

    Article  CAS  Google Scholar 

  34. Barone V, Cossi M, Tomasi J (1998) Geometry optimization of molecular structures in solution by the polarizable continuum model. J Comput Chem 19:404–417. https://doi.org/10.1002/(SICI)1096-987X(199803)19:4%3c404::AID-JCC3%3e3.0.CO;2-W

    Article  CAS  Google Scholar 

  35. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681. https://doi.org/10.1002/JCC.10189

    Article  CAS  PubMed  Google Scholar 

  36. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1998) NBO Version 3.1, TCI, University of Wisconsin, Madison.

  37. Nandi S, Monesi A, Drgan V et al (2013) Quantitative structure-activation barrier relationship modeling for Diels-Alder ligations utilizing quantum chemical structural descriptors. Chem Cent J 7:1–13. https://doi.org/10.1186/1752-153X-7-171/FIGURES/5

    Article  Google Scholar 

  38. Klumpp DA (2008) Superelectrophiles: charge–charge repulsive effects. Chem - A Eur J 14:2004–2015. https://doi.org/10.1002/CHEM.200701470

    Article  CAS  Google Scholar 

  39. Badenhoop JK, Weinhold F (1999) Natural steric analysis of internal rotation barriers. Int J Quantum Chem 72:269. https://doi.org/10.1002/(SICI)1097-461X

  40. Lendvay G (2002) Bond orders from ab initio calculations and a test of the principle of bond order conservation. J Phys Chem 93:4422–4429. https://doi.org/10.1021/J100348A011

    Article  Google Scholar 

  41. Shiroudi A, Zahedi E (2012) Theoretical study and NBO analysis of the kinetics and mechanism of the gas phase elimination reactions of 2-chloroethylsilane and derivatives. Prog React Kinet Mech 37:76–89. https://doi.org/10.3184/146867812X13242290723354

  42. Reed AE, Curtiss LA, Weinhold F (2002) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926. https://doi.org/10.1021/CR00088A005

    Article  Google Scholar 

  43. Reed AE, Weinstock RB, Weinhold F (1998) Natural population analysis. J Chem Phys 83:735. https://doi.org/10.1063/1.449486

    Article  Google Scholar 

  44. Chuang C-H, Lien M-H (2004) Computational study on the effects of substituents and functional groups in the isomerization of 1- and 2-substituted propenes, acetaldimines, and aldehydes. European J Org Chem 2004:1432–1443. https://doi.org/10.1002/EJOC.200300666

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the necessary research facilities provided by the Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, design, data collection, and analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Prasanta K. Nandi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 294 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Roy, R.S. & Nandi, P.K. Unveiling the theoretical aspects of superelectrophilic activation in an inverse demand Diels-Alder reaction. J Mol Model 29, 89 (2023). https://doi.org/10.1007/s00894-023-05495-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05495-7

Keywords

Navigation