Skip to main content
Log in

Theoretical and experimental study of the diastereoisomers (2S) and (2R)-naringenin-6-C-β-D-glucopyranoside obtained from Clitoria guianensis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work the diastereoisomers (2S) and (2R)-naringenin-6-C-β-D-glucopyroside, isolated for the first time from Clitoria guianensis, were studied using the density functional theory. The frontier molecular orbitals and structural properties showed that the diastereoisomers exhibit the same energy gap 166.61 kcal mol−1 and structural properties different, where in the S diastereoisomer, the bond length between the chiral carbon and the phenolic group is greater (difference of 0.0126 Å). The HPLC data showed that the retention time of the S-diastereoisomer (16.7 min) is shorter than that of R, suggesting that the S compound is more polar than R. The HPLC results corroborates with the molecular electrostatic potential which showed that in the S configuration, the electronegative density was more intense overall, particularly in the glucose molecule. The reactivity indices showed that the diastereoisomers are good electrophiles and reactive species. Finally, the absolute configuration of the diastereoisomers were determined using electronic circular dichroism (ECD) spectroscopy and the theoretical spectra were similar to the experimental.

Methods

All calculations of Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TDDFT) were performed using the program Gaussian 09 and the structures of the diastereoisomers were generated and analyzed using the GaussView program. The optimization and vibrational frequency calculations were performed using the functional CAM-B3LYP and 6–311 +  + G(2d,2p) basis set. Conformational searches were performed for R configuration, by molecular mechanics using the MM + , MMFF, and OPLS05 force fields; the entire molecular mechanics simulation was performed using the Maestro/MacroModel software. The calculations for the simulations of the ECD spectra were performed for the eight lowest energy conformers obtained in the geometric optimization step, and the TDDFT at the CAM-B3LYP/6–311 +  + G(2d,2p) theory level used. The effects of methanol and chloroform were calculated using the SMD implicit solvent model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Durigan G (2018) Plantas pequenas do cerrado: biodiversidade negligenciada. Governo do Estado de São Paulo, Secretaria do Meio Ambiente, Instituto Florestal, São Paulo

    Google Scholar 

  2. Fantz PR (1995) Taxonomic notes on new varieties of species of clitoria (leguminisae - phaseoleae - clitoriinae). SIDA, contributions to botany 16:721–730. Published By: The Botanical Research Institute of Texas, Inc

  3. BG, Mehla J, Gupta P (2018) Clitoria-ternatea-linn-a-herb-with-potential-pharmacological-activitiesfuture-prospects-as-therapeutic-herbal-medicine. J Pharma Rep 3:141

    Google Scholar 

  4. Kshetrimayum B (2017) Medicinal plants and its therapeutic uses. OMICS International

    Book  Google Scholar 

  5. Cunha C, Siebeneichler S, Nascimento I, Holzbach J (2020) A new isoflavone and other constituents from roots of clitoria guianensis. J Braz Chem Soc. https://doi.org/10.21577/0103-5053.20200061

    Article  Google Scholar 

  6. Wallace BA, Janes RW (2009) Modern techniques for circular dichroism and synchrotron radiation circular dichroism spectroscopy. Amsterdam: Ios Press Bv,. 232 p. https://www.iospress.com/catalog/books/modern-techniques-for-circular-dichroism-and-synchrotron-radiation-circular-dichroism. Accessed 15 Jun 2022

  7. Fasman GD (1996) Circular dichroism and the conformational analysis of biomolecules. Springer US, Boston

    Book  Google Scholar 

  8. Berova N, Polavarapu PL, Nakanishi K, Woody RW (2012) Frontmatter. In: Comprehensive Chiroptical Spectroscopy. Wiley, Hoboken

  9. Batista A, Angrisani B, Lima ME, da Silva S, Schettini V, Chagas H, dos Santos F Jr, Batista J Jr, Valverde A (2021) Absolute configuration reassignment of natural products: an overview of the last decade. J Braz Chem Soc. https://doi.org/10.21577/0103-5053.20210079

    Article  Google Scholar 

  10. Macedo A, Martorano L, de Albuquerque AC et al (2020) Absolute configuration of (−)-Cubebin, a classical lignan with pharmacological potential, defined by means of chiroptical spectroscopy. J Braz Chem Soc. https://doi.org/10.21577/0103-5053.20200103

    Article  Google Scholar 

  11. Monteiro J, Passero LFD, Jesus JA, Laurenti MD, Lago JHG, Soares MG, Batista ANL, Batista JM, Sartorelli P (2022) Absolute configuration and antileishmanial activity of (–)-Cyclocolorenone isolated from duguetia lanceolata (Annonaceae). Curr Top Med Chem 22:1626–1633

    Article  CAS  PubMed  Google Scholar 

  12. Jimenez DEQ, Barreiro JC, dos Santos Jr FM, de Vasconcellos SP, Porto ALM, Batista JM Jr (2019) Enantioselective ene-reduction of E-2-cyano-3-(furan-2-yl) acrylamide by marine and terrestrial fungi and absolute configuration of (R)-2-cyano-3-(furan-2-yl) propanamide determined by calculations of electronic circular dichroism (ECD) spectra. Chirality 31:534–542. https://doi.org/10.1002/chir.23078

    Article  CAS  PubMed  Google Scholar 

  13. de Freitas Milagre CD, do Amaral BS, Junior JMB, Vilela AFL, Cardoso CL, Milagre HMS (2022) Levetiracetam analogs: chemoenzymatic synthesis, absolute configuration assignment and evaluation of cholinesterase inhibitory activities. Eclética Química 47:17–35. https://doi.org/10.26850/1678-4618eqj.v47.2.2022.p17-35

    Article  CAS  Google Scholar 

  14. Budzianowski J, Skrzypczakowa L (1978) 6-C-Glucosylnaringenin from Tulipa gesneriana. Phytochemistry 17:2044. https://doi.org/10.1016/S0031-9422(00)88769-5

    Article  CAS  Google Scholar 

  15. Frisch J, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09, Revision D.01. Gaussian, Inc., Wallingford

    Google Scholar 

  16. Dennington R, Keith T, Millam J (2009) Gauss View, Version 5. Semichem Inc., Shawnee Mission

    Google Scholar 

  17. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: The density functional viewpoint. J Chem Phys 68:3801–3807. https://doi.org/10.1063/1.436185

    Article  CAS  Google Scholar 

  18. Duarte HA (2001) Índices de reatividade química a partir da teoria do funcional de densidade: formalismo e perspectivas. Quím Nova 24:501–508. https://doi.org/10.1590/S0100-4042200100040001

    Article  CAS  Google Scholar 

  19. Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1:104–113. https://doi.org/10.1016/S0031-8914(34)90011-2

    Article  Google Scholar 

  20. Schrödinger release (2021) 2021–4: MacroModel, Schrödinger, LLC, New York

  21. Batista Junior JM (2012) Dicroísmo circular vibracional e eletrônico na determinação da configuração absoluta de benzopiranos de Peperomia obtusifolia e Piper gaudichaudianum (Piperaceae): implicações biológicas e biossintéticas. Thesis. Instituto de Química, Universidade Estadual Paulista – UNESP

  22. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396. https://doi.org/10.1021/jp810292n

    Article  CAS  PubMed  Google Scholar 

  23. Stein T, Kronik L, Baer R (2009) Reliable prediction of charge transfer excitations in molecular complexes using time-dependent density functional theory. J Am Chem Soc 131:2818–2820. https://doi.org/10.1021/ja8087482

    Article  CAS  PubMed  Google Scholar 

  24. Brédas J-L (2017) Organic electronics: does a plot of the HOMO–LUMO wave functions provide useful information? Chem Mater 29:477–478. https://doi.org/10.1021/acs.chemmater.6b04947

    Article  CAS  Google Scholar 

  25. Souza A, Boza I, Ximenes V et al (2019) ELUCIDAÇÃO DA QUIRALIDADE INDUZIDA NA MOLÉCULA DANSILGLICINA NA COMPLEXAÇÃO COM A PROTEÍNA ALBUMINA DO SORO HUMANO (HSA). Quím Nova. https://doi.org/10.21577/0100-4042.20170341

  26. Pereira DH, Ducati LC, Rittner R, Custodio R (2014) A study of the rotational barriers for some organic compounds using the G3 and G3CEP theories. J Mol Model 20:2199. https://doi.org/10.1007/s00894-014-2199-3

    Article  CAS  PubMed  Google Scholar 

  27. Devi D, Arasu MMA, Girija AM (2022) Spectroscopic (FTIR, UV-Vis, NMR) investigations, DFT predictions of global reactivity descriptors and efficient corrosion inhibitors of N-carbobenzoxy-L-ValineSuccinimidyl Ester. J Indian Chem Soc 99:100400. https://doi.org/10.1016/j.jics.2022.100400

    Article  CAS  Google Scholar 

  28. Kaviani S, Izadyar M, Housaindokht MR (2016) Solvent and spin state effects on molecular structure, IR spectra, binding energies and quantum chemical reactivity indices of deferiprone–ferric complex: DFT study. Polyhedron 117:623–627. https://doi.org/10.1016/j.poly.2016.06.041

    Article  CAS  Google Scholar 

  29. Domingo LR, Pérez P (2011) The nucleophilicity N index in organic chemistry. Org Biomol Chem 9:7168–7175. https://doi.org/10.1039/C1OB05856H

    Article  CAS  PubMed  Google Scholar 

  30. Costa RA, da Silva JN, Oliveira VG, Anselmo LM, Araújo MM, Oliveira KMT, de Nunomura R, CS, (2021) New insights into structural, electronic, reactivity, spectroscopic and pharmacological properties of Bergenin: Experimental, DFT calculations, MD and docking simulations. J Mol Liq 330:115625. https://doi.org/10.1016/j.molliq.2021.115625

    Article  CAS  Google Scholar 

  31. Bhattacharya A, Naskar JP, Saha P, Ganguly R, Saha B, Choudhury ST, Chowdhury S (2016) A new oxorhenium(V) complex with benzothiazole derived ligand: Relative stability and global chemical reactivity indices. Inorg Chim Acta 447:168–175. https://doi.org/10.1016/j.ica.2016.04.002

    Article  CAS  Google Scholar 

  32. Santos Oliveira I, Marrote Manzano C, Hideki Nakahata D et al (2022) Antibacterial and antifungal activities in vitro of a novel silver(I) complex with sulfadoxine-salicylaldehyde Schiff base. Polyhedron 225:116073. https://doi.org/10.1016/j.poly.2022.116073

    Article  CAS  Google Scholar 

  33. Raghi KR, Sherin DR, Saumya MJ, Arun PS, Sobha VN, Manojkumar TK (2018) Computational study of molecular electrostatic potential, docking and dynamics simulations of gallic acid derivatives as ABL inhibitors. Comput Biol Chem 74:239–246. https://doi.org/10.1016/j.compbiolchem.2018.04.001001

    Article  CAS  PubMed  Google Scholar 

  34. Reis DT, de Aguiar Filho SQ, Grotto CGL, Bihain MFR, Pereira DH (2020) Carboxymethylcellulose and cellulose xanthate matrices as potential adsorbent material for potentially toxic Cr3+, Cu2+ and Cd2+metal ions: a theoretical study. Theor Chem Acc 139:96. https://doi.org/10.1007/s00214-020-02610-2

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by CAPES (Coordination of Improvement of Higher Education Personnel, Brazil, Funding Code 001 CAPES) and the PROPESQ/Federal University of Tocantins (Edital para tradução de artigos científicos da Universidade Federal do Tocantins, PROPESQ/UFT). Douglas H. Pereira acknowledge the Center for Computational Engineering and Sciences (financial support from FAPESP—Fundação de Amparo à Pesquisa, Grant 2013/08293–7, and Grant 2017/11485–6), the National Center for High Performance Processing (Centro Nacional de Processamento de Alto Desempenho – CENAPAD) in São Paulo for their computational resources and the FAPT (Fundação de Amparo à Pesquisa—Governo do Tocantins) for productivity grant. To Evam Stoll and Christina Moke of the Schrödinger Platform Science and Technology team, Inc. by the license provided.

Author information

Authors and Affiliations

Authors

Contributions

A.B.C. and N.N.C. performed the simulations and analyzed the data. C.LC., J.C.H. and I.R.N. performed the experimental analyzes and analyzed the data. I.R.N. supervised the experiments. D.H.P. supervised the simulations. A.B.C, N.N.C. and C.L.C. wrote the first draft of the manuscript. J.C.H., I.R.N. and D.H.P. provided critical feedback and revised the draft the manuscript.

Corresponding author

Correspondence to Douglas Henrique Pereira.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent to publish

Not applicable.

Conflicts of interest/competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to the Topical Collection IX Symposium on Electronic Structure and Molecular Dynamics – IX SeedMol

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, Á.B., Ciribelli, N.N., Cunha, C.L. et al. Theoretical and experimental study of the diastereoisomers (2S) and (2R)-naringenin-6-C-β-D-glucopyranoside obtained from Clitoria guianensis. J Mol Model 29, 77 (2023). https://doi.org/10.1007/s00894-023-05482-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05482-y

Keywords

Navigation