Skip to main content

Advertisement

Log in

Hydrogen physisorption on the (BeO)n, B2H4(Be,Ti), and B6Ti3 metal clusters: a computational study of energies and atomic charges

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The equilibrium structures of BeO clusters and Be,Ti-decorated boranes were computed with the ωB97X-D method and the 6-31G + (2d,2p) and aug-cc-pVTZ basis sets to study their intermolecular interactions with hydrogen molecules. Thermochemical and molecular properties such as the harmonic vibrational frequency, dipole and quadrupole moments, and atomic charges are employed to understand the attractive interactions that control the adsorption process. Comparison of molecular properties and atomic charges of the studied compounds before and after H2 molecule adsorption shows that most of the interactions among the BeO clusters and boranes with H2 molecules constitute a combination of dispersion, electrostatic, and weak charge transfer interactions. Calculated values of Hirschfeld atomic charges and ΔEe (in parenthesis) (BeO)4.8H2 (0.028 e and –2.0 kcal.mol-1), (BeO)2.12H2 (0.030 e and –2.8 kcal.mol-1), B6Ti3.10H2 (0.045 e and –15.4 kcal.mol-1), and B6Ti3+.10H2 (0.058 e and –15.3 kcal.mol-1) show qualitative correlation between hydrogen atomic charges and electronic energy of hydrogen interaction. The ωB97X-D/6–31 + G(2d,2p) values of Gibbs free energy at 298.15 K for (BeO)4.8H2 B2H4Ti.4H2 and B6Ti3.10H2 clusters are equal to –5.0, –4.9, and –5.1 kcal.mol-1, respectively, which are within the range of energy parameters of materials that could be employed in hydrogen storage tanks for light vehicles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All relevant data are available in the electronic supplementary information.

Code availability

Gaussian 09 Revision A.02 is used for all the calculations in this work.

References

  1. Report of IPCC 2022. Access on September 12, 2022: https://www.ipcc.ch/report/ar6/wg2/.

  2. Chomsky N, Pollin R, Polychroniou CJ (2020) Climate crisis and global green deal. Verso, London

    Google Scholar 

  3. Clean Hydrogen Partnership through the Horizon Europe Programme. Access on November 4, 2022. https://www.clean-hydrogen.europa.eu/media/news/accelerating-hydrogen-economy-2022-05-18_en

  4. DOE technical targets for onboard hydrogen storage for light duty vehicles. https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles

  5. Suh MP, Park HJ, Prasad TK, Lim D-W (2012) Hydrogen storage in metal-organic frameworks energy. Chem Rev 112:782. https://doi.org/10.1021/cr200274s

    Article  CAS  Google Scholar 

  6. Oliveira ACM, Pavão AC (2018) Theoretical study of hydrogen storage in metal hydrides. J Mol Model 24:127–134. https://doi.org/10.1007/s00894-018-3661-4

    Article  CAS  Google Scholar 

  7. Tsivion E, Long JR, Head-Gordon M (2014) Hydrogen physisorption on metal-organic framework linkers and metalated linkers: a computational study of that control binding strength. Am Chem Soc 136(51):17827–17835. https://doi.org/10.1021/ja5101323

    Article  CAS  Google Scholar 

  8. Jensen J, Introduction to computational chemistry (2007), John Wiley & Sons, West Sussex, England, 2a Edition, 34-50

  9. Kubas GJ (2007) Fundamentals of H2 binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage. Chem Rev 107:4152–4205. https://doi.org/10.1021/cr050197j

    Article  CAS  Google Scholar 

  10. Maia RA, Oliveira FL, Ritleng V, Wang Q, Benoît L, Esteves PM (2021) CO2 Capture by hydroxylated azine-based covalent organic frameworks. Chem A Eur J 27:8048–8055. https://doi.org/10.1002/chem.202100478

    Article  CAS  Google Scholar 

  11. Kumar S, Kumar TJD (2017) Electronic structure calculations of hydrogen storage in lithium-decorated metal-graphyne framework Appl Mater. Interfaces 9(34):28659–28666. https://doi.org/10.1021/acsami.7b09893

    Article  CAS  Google Scholar 

  12. Liu Z, Liu S, Suleyman ER (2019) Hydrogen storage properties of Li-decorated B2S monolayers: a DFT study. Int J Hydrogen Energy 44:16803–16810. https://doi.org/10.1016/j.ijhydene.2019.04.234

    Article  CAS  Google Scholar 

  13. Shind R, Tayade M (2014) Remarkable hydrogen storage on beryllium oxide clusters: first-principles calculations. J Phys Chem C 118(31):17200–17204. https://doi.org/10.1021/jp4109943

    Article  CAS  Google Scholar 

  14. Roberto-Neto O, Carvalho EFV (2020) A DFT and wave function theory study of hydrogen adsorption on small beryllium oxide clusters. Theor Chem Accounts 139:93–103. https://doi.org/10.1007/s00214-020-02605-z

    Article  CAS  Google Scholar 

  15. Konda R, Titus E, Chaudhari A (2018) Adsorption of molecular hydrogen on inorganometallic complexes B2H4M (M = Li, Be, Sc, Ti, V). Struct Chem 29(6):1593–1599. https://doi.org/10.1007/s11224-018-1128-y

    Article  CAS  Google Scholar 

  16. Guo C, Wang C (2018) Computational investigation of hydrogen storage on B6Ti3+. Int J Hydrog Energy 43:1658–1666. https://doi.org/10.1016/j.ijhydene.2017.11.161

    Article  CAS  Google Scholar 

  17. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Physics 44:6615–6620. https://doi.org/10.1039/B810189B

    Article  Google Scholar 

  18. Grimme S (2011) Density functional theory with London dispersion corrections. Adv Rev 1:211–227. https://doi.org/10.1039/B810189B

    Article  CAS  Google Scholar 

  19. Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. XII Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. Chem Phys 56:2257–2261. https://doi.org/10.1063/1.1677527

    Article  CAS  Google Scholar 

  20. Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I The atoms boron through neon and hydrogen J Chem Phys 90:1007–1018. https://doi.org/10.1063/1.456153

    Article  CAS  Google Scholar 

  21. Hirschfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44:129–138. https://doi.org/10.1007/BF00549096

    Article  Google Scholar 

  22. Guerra CF, Handgraaf J-W, Baerends EJ, Bickelhaupt FM (2003) Voronoi deformation density (VDD) charges: assessment of the Mulliken Bader, Hirshfeld, and VDD Methods for Charge Analysis. J Comput Chem 25:189–210. https://doi.org/10.1002/jcc.10351

    Article  CAS  Google Scholar 

  23. Frish MJ et al (2009) GAUSSIAN 09 revision B.01, Gaussian Inc, Wallingford. CT

    Google Scholar 

  24. Hobza P, Zharadnik R, Müller-Dethlefs K (2006) The world of non-covalent interactions: Collect. Czech Chem Commun 71:443–531. https://doi.org/10.1135/cccc20060443

    Article  CAS  Google Scholar 

  25. Boeyens JCA (2008) The periodic electronegativity table. Zeitschrift fur Naturforschung B 63:199–209. https://doi.org/10.1515/znb-2008-0214

    Article  CAS  Google Scholar 

  26. Areán CO, Bonelli B, Delgado MR, Garrone E (2009) Hydrogen storage via physisorption: the combined role of adsorption enthalpy and entropy. Turk J Chem 33:599–606. https://doi.org/10.3906/kim-0812-22

    Article  CAS  Google Scholar 

  27. Pearson’s Correlation Coefficient (2008). In: Kirch, W. (eds) Encyclopedia of Public Health. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5614-7_2569.

  28. Peterson KA, Feller D, Dixon DA (2012) Chemical accuracy in ab initio thermochemistry and spectroscopy: current strategies and future challenges. Theoret Chem Acc 131(1):1–20

    Article  CAS  Google Scholar 

  29. Kapelewski MT, Ručevski T, Tarver JD, Jiang HZH, Hurst KE, Parilla PA, Ayala A, Gennett T, FitzGerald SA, Brown CM, Long JR (2018) Record high hydrogen storage capacity in the metal-organic framework Ni2 (m-dobdc) at near-ambient temperatures. Chem Mater 30:8179. https://doi.org/10.1021/acs.chemmater.8b03276

    Article  CAS  Google Scholar 

Download references

Funding

We acknowledge the research support of the Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão (FAPEMA) under grant no. 06414/22 and by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under grant no. 480119/2012–0.

Author information

Authors and Affiliations

Authors

Contributions

All authors gave equivalent contributions in the planning, development of calculations, analysis of data, and writing of this manuscript.

Corresponding author

Correspondence to O. Roberto-Neto.

Ethics declarations

Ethics approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to Topical Collection XXI - Brazilian Symposium of Theoretical Chemistry (SBQT2021).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasconcellos, L.C., de Carvalho, E.F.V. & Roberto-Neto, O. Hydrogen physisorption on the (BeO)n, B2H4(Be,Ti), and B6Ti3 metal clusters: a computational study of energies and atomic charges. J Mol Model 29, 48 (2023). https://doi.org/10.1007/s00894-022-05432-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05432-0

Keywords

Navigation