Skip to main content
Log in

Application of zinc oxide nano-tube as drug-delivery vehicles of anticancer drug

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract 

Context

Zinc oxide nano-tube (ZnONT) nano-structures, which possess chemical stability and non-toxicity in the human body, are considered promising for delivering different drugs. Within this work, we scrutinized the drug delivery capability of the ZnONT and its adsorptional properties as a drug delivery vehicle (DDV) for hydroxyurea (HU) as an anti-cancer drug through density functional theory along with the solvent impacts. Based on the optimized structures, it can be suggested that Zn atoms of ZnONT are the ideal sites on this nano-tube for the adsorption of HU. HU had a strong physical adsorption through the O atom of carbonyl groups onto the local pyramidal site of the ZnONT. At 1.96 Å and Ead of −39.28 kcal/mol, in the configuration which was favorable in terms of energy, there was an interaction between the O atoms of –C=O group of the drug and a Zn atom of the ZnONT. In order to scrutinize the excited state properties of the HU-ZnONT complex, we also examined the UV/Vis data of the HU/ZnONT interaction system. Following the adsorption of HU onto the surface of the ZnONT, there was a significant red-shift based on the maximum absorption wavelength, showing that the ZnONT is an ideal candidate for optic sensors in order to detect and monitor the drug molecule. HU could be released in the cancer tissues where pH was low based on the drug release mechanism. The current work thoroughly investigated the mechanism of interaction between the ZnONT and HU, showing that ZnONT can be used for the smart drug delivery of HU. Overall, the findings suggest that ZnONT could be used as an efficient drug-delivery system for the HU drug to treat various types of cancer.

Methods

In this work we used B3LYP-gCP-D3 functional and the basis set LANL2DZ on the transition metal (Zn) and the basis set cc-pVDZ on the others. GAMESS software program was employed for performing the calculations. we performed analyses, including charge transport, molecular electrostatic potential surface (MEP), energetic, electronic, natural bond orbitals (NBOs), and structural optimizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Confirm.

References

  1. Chen X, Sun Z, Zhang H, Onsori S (2020) Effect of metal atoms on the electronic properties of metal oxide nanoclusters for use in drug delivery applications: a density functional theory study. Mol Phys 118(13):e1692150

    Article  Google Scholar 

  2. Langer R (1998) Drug delivery and targeting. Nature 392(6679 Suppl):5–10

    CAS  Google Scholar 

  3. Langer R (1990) New methods of drug delivery. Science 249(4976):1527–1533

    Article  CAS  Google Scholar 

  4. Zhang X, Liu L, Chen W-C, Wang F, Cheng Y-R, Liu Y-M, Lai Y-F, Zhang R-J, Qiao Y-N, Yuan Y-Y, Lin Y, Xu W, Cao J, Gui Y-H, Zhao J-Y (2022) Gestational Leucylation Suppresses Embryonic T-Box Transcription Factor 5 Signal and Causes Congenital Heart Disease. Adv Sci 9(15):2201034

  5. Cai K, Wang F, Lu J-Q, Shen A-N, Zhao S-M, Zang W-D et al (2022) Nicotinamide mononucleotide alleviates cardiomyopathy phenotypes caused by short-chain enoyl-CoA hydratase 1 deficiency. Basic to Translational Science 7(4):348–362

    Article  Google Scholar 

  6. Qu Y-Y, Zhao R, Zhang H-L, Zhou Q, Xu F-J, Zhang X et al (2020) Inactivation of the AMPK–GATA3–ECHS1 pathway induces fatty acid synthesis that promotes clear cell renal cell carcinoma growth. Can Res 80(2):319–333

    Article  CAS  Google Scholar 

  7. Li Y, Yao C-F, Xu F-J, Qu Y-Y, Li J-T, Lin Y et al (2019) APC/CCDH1 synchronizes ribose-5-phosphate levels and DNA synthesis to cell cycle progression. Nat Commun 10(1):1–16

    Google Scholar 

  8. Jin H-Y, Wang Z-A (2019) Global stabilization of the full attraction-repulsion Keller-Segel system, arXiv preprint arXiv:1905.05990

  9. Li R, Qian X, Gong C, Zhang J, Liu Y, Xu B, Humayun MS, Zhou Q (2022) Simultaneous Assessment of the Whole Eye Biomechanics Using Ultrasonic Elastography, IEEE Transactions on Biomedical Engineering, pp 1–8

  10. Zhang Y, Yang C, Wang W, Liu J, Liu Q, Huang F et al (2016) Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Sci Rep 6(1):1–12

    Google Scholar 

  11. Jadia R, Scandore C, Rai P (2016) Nanoparticles for effective combination therapy of cancer. Int J Nanotechnol Nanomed 1(1)

  12. Gad A, Kydd J, Piel B, Rai P (2016) Targeting cancer using polymeric nanoparticle mediated combination chemotherapy. Int J Nanomed Nanosurg 2(3)

  13. Kydd J, Jadia R, Velpurisiva P, Gad A, Paliwal S, Rai P (2017) Targeting strategies for the combination treatment of cancer using drug delivery systems. Pharmaceutics 9(4):46

    Article  Google Scholar 

  14. Zhang X, Qu Y-Y, Liu L, Qiao Y-N, Geng H-R, Lin Y et al (2021) Homocysteine inhibits pro-insulin receptor cleavage and causes insulin resistance via protein cysteine-homocysteinylation. Cell Rep 37(2):109821

    Article  CAS  Google Scholar 

  15. Wang X-H, Xu S, Zhou X-Y, Zhao R, Lin Y, Cao J et al (2021) Low chorionic villous succinate accumulation associates with recurrent spontaneous abortion risk. Nat Commun 12(1):1–14

    Google Scholar 

  16. Wang D, Zhao R, Qu Y-Y, Mei X-Y, Zhang X, Zhou Q et al (2018) Colonic lysine homocysteinylation induced by high-fat diet suppresses DNA damage repair. Cell Rep 25(2):398–412

    Article  CAS  Google Scholar 

  17. Wang D, Wang F, Shi KH, Tao H, Li Y, Zhao R et al (2017) Lower circulating folate induced by a fidgetin intronic variant is associated with reduced congenital heart disease susceptibility. Circulation 135(18):1733–1748. https://doi.org/10.1161/circulationaha.116.025164

    Article  CAS  Google Scholar 

  18. Xu W, Li C, Zhang Y, Ali HM, Sharma S, Li R, Yang M, Gao T, Liu M, Wang X, Said Z, Liu X, Zhou Z (2022) Electrostatic atomization minimum quantity lubrication machining: from mechanism to application. Int J Extrem Manuf 4:042003

  19. Kumar B, Jalodia K, Kumar P, Gautam HK (2017) Recent advances in nanoparticle-mediated drug delivery. J Drug Deliv Sci Technol 41:260–268

    Article  CAS  Google Scholar 

  20. Wang Y, Wang F, Shen Y, He Q, Guo S (2018) Tumor-specific disintegratable nanohybrids containing ultrasmall inorganic nanoparticles: from design and improved properties to cancer applications. Mater Horiz 5(2):184–205

    Article  CAS  Google Scholar 

  21. Song K, Wu D (2022) Shared decision-making in the management of patients with inflammatory bowel disease. World J Gastroenterol 28(26):3092–3100

    Article  CAS  Google Scholar 

  22. Duan C, Deng H, Xiao S, Xie J, Li H, Zhao X et al (2022) Accelerate gas diffusion-weighted MRI for lung morphometry with deep learning. Eur Radiol 32(1):702–713

    Article  Google Scholar 

  23. Zou M, Yang Z, Fan Y, Gong L, Han Z, Ji L, Hu X, Wu D (2022) Gut microbiota on admission as predictive biomarker for acute necrotizing pancreatitis. Front Immunol 13:988326

  24. Lai W-F, Wong W-T (2021) Use of graphene-based materials as carriers of bioactive agents. Asian J Pharm Sci 16(5):577–588

    Article  Google Scholar 

  25. Lai W-F, Wong W-T (2021) Property-tuneable microgels fabricated by using flow-focusing microfluidic geometry for bioactive agent delivery. Pharmaceutics 13(6):787

    Article  CAS  Google Scholar 

  26. Lai W-F (2020) Non-conjugated polymers with intrinsic luminescence for drug delivery. J Drug Deliv Sci Technol 59:101916

    Article  CAS  Google Scholar 

  27. Lai W-F, Tang R, Wong W-T (2020) Ionically crosslinked complex gels loaded with oleic acid-containing vesicles for transdermal drug delivery. Pharmaceutics 12(8):725

    Article  CAS  Google Scholar 

  28. Agnihotri J, Saraf S, Khale A (2011) Targeting: new potential carriers for targeted drug delivery system. Int J Pharm Sci Rev Res 8(2):117–123

    CAS  Google Scholar 

  29. Nicolardi S, Van Der Burgt YE, Codée JD, Wuhrer M, Hokke CH, Chiodo F (2017) Structural characterization of biofunctionalized gold nanoparticles by ultrahigh-resolution mass spectrometry. ACS Nano 11(8):8257–8264

    Article  CAS  Google Scholar 

  30. Howorka S (2017) Building membrane nanopores. Nat Nanotechnol 12(7):619–630

    Article  CAS  Google Scholar 

  31. Wang Z, Dai L, Yao J, Guo T, Hrynsphan D, Tatsiana S et al (2021) Improvement of Alcaligenes sp. TB performance by Fe-Pd/multi-walled carbon nanotubes: enriched denitrification pathways and accelerated electron transport. Biores Technol 327:124785

    Article  CAS  Google Scholar 

  32. Zhang W, Guan X, Qiu X, Gao T, Yu W, Zhang M et al (2023) Bioactive composite Janus nanofibrous membranes loading ciprofloxacin and astaxanthin for enhanced healing of full-thickness skin defect wounds. Appl Surf Sci 610:155290

    Article  CAS  Google Scholar 

  33. Li H, Zhao X, Wang Y, Lou X, Chen S, Deng H et al (2021) Damaged lung gas exchange function of discharged COVID-19 patients detected by hyperpolarized 129Xe MRI. Sci Adv 7(1):eabc8180

    Article  CAS  Google Scholar 

  34. Zeng Q, Bie B, Guo Q, Yuan Y, Han Q, Han X et al (2020) Hyperpolarized Xe NMR signal advancement by metal-organic framework entrapment in aqueous solution. Proc Natl Acad Sci 117(30):17558–17563

    Article  CAS  Google Scholar 

  35. Liu P, Shi J, Wang Z-A (2013) Pattern formation of the attraction-repulsion Keller-Segel system. Discrete Contin Dyn Sys-B 18(10):2597

    Google Scholar 

  36. Wang X, Li C, Zhang Y, Ali HM, Sharma S, Li R et al. (2022) Tribology of enhanced turning using biolubricants: a comparative assessment. Tribol Int 107766

  37. Li R, Du Z, Qian X, Li Y, Martinez-Camarillo J-C, Jiang L et al (2021) High resolution optical coherence elastography of retina under prosthetic electrode. Quant Imaging Med Surg 11(3):918

    Article  CAS  Google Scholar 

  38. Saikia N, Deka RC (2014) Density functional study on noncovalent functionalization of pyrazinamide chemotherapeutic with graphene and its prototypes. New J Chem 38(3):1116–1128

    Article  CAS  Google Scholar 

  39. Chen RJ, Bangsaruntip S, Drouvalakis KA, Kam NWS, Shim M, Li Y et al (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci 100(9):4984–4989

    Article  CAS  Google Scholar 

  40. Li J, Zhu J-J (2013) Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst 138(9):2506–2515

    Article  CAS  Google Scholar 

  41. Zhang Y, Li C, Ji H, Yang X, Yang M, Jia D et al (2017) Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms. Int J Mach Tools Manuf 122:81–97

    Article  Google Scholar 

  42. Yang M, Li C, Zhang Y, Jia D, Zhang X, Hou Y et al (2017) Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions. Int J Mach Tools Manuf 122:55–65

    Article  Google Scholar 

  43. Singh A, Sinsinbar G, Choudhary M, Kumar V, Pasricha R, Verma H et al (2013) Graphene oxide-chitosan nanocomposite based electrochemical DNA biosensor for detection of typhoid. Sens Actuators, B Chem 185:675–684

    Article  CAS  Google Scholar 

  44. Li P, Deng S-H, Huang J (2011) First-principles studies on the dominant acceptor and the activation mechanism of phosphorus-doped ZnO. Appl Phys Lett 99(11):111902

    Article  Google Scholar 

  45. Tayebee R, Hosseini-Nasr A, Zamand N, Maleki B (2015) Density functional study on the adsorption of some aliphatic aldehydes on (ZnO) 12 and M-doped (ZnO) 12 nanocages. Polyhedron 102:503–513

    Article  CAS  Google Scholar 

  46. Lahmer M (2016) The effect of hydrogen adsorption on the properties of undoped and Cu-doped ZnO (101¯ 0) surfaces: a first-principles study. J Phys Chem Solids 89:89–96

    Article  CAS  Google Scholar 

  47. Hjiri M, El Mir L, Leonardi S, Pistone A, Mavilia L, Neri G (2014) Al-doped ZnO for highly sensitive CO gas sensors. Sens Actuators B Chem 196:413–420

    Article  CAS  Google Scholar 

  48. Hjiri M, Dhahri R, El Mir L, Bonavita A, Donato N, Leonardi S et al (2015) CO sensing properties of Ga-doped ZnO prepared by sol–gel route. J Alloy Compd 634:187–192

    Article  CAS  Google Scholar 

  49. Cao B, Lorenz M, Brandt M, von Wenckstern H, Lenzner J, Biehne G et al. (2008) P‐type conducting ZnO: P microwires prepared by direct carbothermal growth. physica status solidi. (RRL)–Rapid Res Lett 2(1): 37–39

  50. Shan C, Liu Z, Hark S (2008) Temperature dependent photoluminescence study on phosphorus doped ZnO nanowires. Appl Phys Lett 92(7):073103

    Article  Google Scholar 

  51. Ayaz Khan S, Azam S, Kanoun MB, Murtaza G, Rani M, Goumri-Said S (2017) Tailoring the electronic structure and optical properties of cadmium-doped zinc oxides nanosheet. Cogent Physics 4(1):1391734

    Article  Google Scholar 

  52. Xu S, Tao H, Cao W, Cao L, Lin Y, Zhao S-M et al (2021) Ketogenic diets inhibit mitochondrial biogenesis and induce cardiac fibrosis. Signal Transduct Target Ther 6(1):1–13

    Google Scholar 

  53. Yang M, Li C, Zhang Y, Jia D, Li R, Hou Y et al (2019) Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions. Ceram Int 45(12):14908–14920

    Article  CAS  Google Scholar 

  54. Zhang J, Li C, Zhang Y, Yang M, Jia D, Liu G et al (2018) Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air. J Clean Prod 193:236–248

    Article  CAS  Google Scholar 

  55. Wang X, Li C, Zhang Y, Said Z, Debnath S, Sharma S et al (2022) Influence of texture shape and arrangement on nanofluid minimum quantity lubrication turning. Int J Adv Manuf Technol 119(1):631–646

    Article  Google Scholar 

  56. Zhang Y, Li C, Yang M, Jia D, Wang Y, Li B et al (2016) Experimental evaluation of cooling performance by friction coefficient and specific friction energy in nanofluid minimum quantity lubrication grinding with different types of vegetable oil. J Clean Prod 139:685–705

    Article  CAS  Google Scholar 

  57. Shetti NP, Malode SJ, Nayak DS, Bagihalli GB, Kalanur SS, Malladi RS et al (2019) Fabrication of ZnO nanoparticles modified sensor for electrochemical oxidation of methdilazine. Appl Surf Sci 496:143656

    Article  CAS  Google Scholar 

  58. George D, Maheswari PU, Begum KMS (2019) Synergic formulation of onion peel quercetin loaded chitosan-cellulose hydrogel with green zinc oxide nanoparticles towards controlled release, biocompatibility, antimicrobial and anticancer activity. Int J Biol Macromol 132:784–794

    Article  CAS  Google Scholar 

  59. Mohammed MH, Hanoon FH (2021) Application of zinc oxide nanosheet in various anticancer drugs delivery: quantum chemical study. Inorg Chem Commun 127:108522

    Article  CAS  Google Scholar 

  60. Gao T, Zhang Y, Li C, Wang Y, Chen Y, An Q et al (2022) Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies. Front Mech Eng 17(2):1–35

    Article  Google Scholar 

  61. Cui X, Li C, Zhang Y, Said Z, Debnath S, Sharma S et al (2022) Grindability of titanium alloy using cryogenic nanolubricant minimum quantity lubrication. J Manuf Process 80:273–286

    Article  Google Scholar 

  62. Zhihong Y, Ye Y, Pejhan A, Nasr A, Nourbakhsh N, Tayebee R (2020) A theoretical study on the pure and doped ZnO nanoclusters as effective nanobiosensors for 5-fluorouracil anticancer drug adsorption. Appl Organomet Chem 34(4):e5534

    Article  CAS  Google Scholar 

  63. Mohammed MH, Hanoon FH (2020) Enhancement the physicochemical properties of ZnONS in the presence various concentrations of Ga impurities and difference anticancer drug molecules. Physica E 124:114384

    Article  CAS  Google Scholar 

  64. Yuan Q, Hein S, Misra R (2010) New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: synthesis, characterization and in vitro drug delivery response. Acta Biomater 6(7):2732–2739

    Article  CAS  Google Scholar 

  65. Angona A, Bellosillo B, Alvarez-Larrán A, Martínez-Avilés L, Camacho L, Pairet S et al (2013) Genetic predisposition to molecular response in patients with myeloproliferative neoplasms treated with hydroxycarbamide. Leuk Res 37(8):917–921

    Article  CAS  Google Scholar 

  66. Liebelt EL, Balk SJ, Faber W, Fisher JW, Hughes CL, Lanzkron SM et al (2007) NTP-CERHR expert panel report on the reproductive and developmental toxicity of hydroxyurea. Birth Defects Res B 80(4):259–366

    Article  CAS  Google Scholar 

  67. Berthaut I, Bachir D, Kotti S, Chalas C, Stankovic K, Eustache F et al (2017) Adverse effect of hydroxyurea on spermatogenesis in patients with sickle cell anemia after 6 months of treatment. Blood J Amer Soc Hematol 130(21):2354–2356

    CAS  Google Scholar 

  68. Gomar M, Yeganegi S (2017) Adsorption of 5-fluorouracil, hydroxyurea and mercaptopurine drugs on zeolitic imidazolate frameworks (ZIF-7, ZIF-8 and ZIF-9). Microporous Mesoporous Mater 252:167–172

    Article  CAS  Google Scholar 

  69. Weng Q, Wang B, Wang X, Hanagata N, Li X, Liu D et al (2014) Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery. ACS Nano 8(6):6123–6130

    Article  CAS  Google Scholar 

  70. Mir M, Ishtiaq S, Rabia S, Khatoon M, Zeb A, Khan GM et al (2017) Nanotechnology: from in vivo imaging system to controlled drug delivery. Nanoscale Res Lett 12(1):1–16

    Article  Google Scholar 

  71. Hesabi M, Behjatmanesh-Ardakani R (2018) Investigation of carboxylation of carbon nanotube in the adsorption of anti-cancer drug: a theoretical approach. Appl Surf Sci 427:112–125

    Article  CAS  Google Scholar 

  72. Sheikhi M, Shahab S, Khaleghian M, Kumar R (2018) Interaction between new anti-cancer drug syndros and CNT (6, 6–6) nanotube for medical applications: geometry optimization, molecular structure, spectroscopic (NMR, UV/Vis, excited state), FMO, MEP and HOMO-LUMO investigation. Appl Surf Sci 434:504–513

    Article  CAS  Google Scholar 

  73. Wu W, Wieckowski S, Pastorin G, Benincasa M, Klumpp C, Briand JP et al (2005) Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem 117(39):6516–6520

    Article  Google Scholar 

  74. Dhar S, Liu Z, Thomale J, Dai H, Lippard SJ (2008) Targeted single-wall carbon nanotube-mediated Pt (IV) prodrug delivery using folate as a homing device. J Am Chem Soc 130(34):11467–11476

    Article  CAS  Google Scholar 

  75. Feazell RP, Nakayama-Ratchford N, Dai H, Lippard SJ (2007) Soluble single-walled carbon nanotubes as longboat delivery systems for platinum (IV) anticancer drug design. J Am Chem Soc 129(27):8438–8439

    Article  CAS  Google Scholar 

  76. Liu Z, Tabakman S, Welsher K, Dai H (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2(2):85–120

    Article  CAS  Google Scholar 

  77. Delle Piane M, Corno M, Ugliengo P (2013) Does dispersion dominate over H-bonds in drug–surface interactions? The case of silica-based materials as excipients and drug-delivery agents. J Chem Theory Comput 9(5):2404–2415

    Article  CAS  Google Scholar 

  78. Karimi M, Ghasemi A, Zangabad PS, Rahighi R, Basri SMM, Mirshekari H et al (2016) Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 45(5):1457–1501

    Article  CAS  Google Scholar 

  79. Morales V, Martín A, Ortiz-Bustos J, Sanz R, García-Muñoz R (2019) Effect of the dual incorporation of fullerene and polyethyleneimine moieties into SBA-15 materials as platforms for drug delivery. J Mater Sci 54(17):11635–11653

    Article  CAS  Google Scholar 

  80. Samanta PN, Das KK (2017) Noncovalent interaction assisted fullerene for the transportation of some brain anticancer drugs: a theoretical study. J Mol Graph Model 72:187–200

    Article  CAS  Google Scholar 

  81. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH et al (1993) General atomic and molecular electronic structure system. J Comput Chem 14(11):1347–1363

    Article  CAS  Google Scholar 

  82. Wright JS, Rowley C, Chepelev L (2005) A ‘universal’B3LYP-based method for gas-phase molecular properties: bond dissociation enthalpy, ionization potential, electron and proton affinity and gas-phase acidity. Mol Phys 103(6–8):815–823

    Article  CAS  Google Scholar 

  83. Kruse H, Goerigk L, Grimme S (2012) Why the standard B3LYP/6-31G* model chemistry should not be used in DFT calculations of molecular thermochemistry: understanding and correcting the problem. J Org Chem 77(23):10824–10834

    Article  CAS  Google Scholar 

  84. Wu J-J, Liu S-C, Wu C-T, Chen K-H, Chen L-C (2002) Heterostructures of ZnO–Zn coaxial nanocables and ZnO nanotubes. Appl Phys Lett 81(7):1312–1314

    Article  CAS  Google Scholar 

  85. Kong X, Sun X, Li X, Li Y (2003) Catalytic growth of ZnO nanotubes. Mater Chem Phys 82(3):997–1001

    Article  CAS  Google Scholar 

  86. Kong XY, Ding Y, Wang ZL (2004) Metal− semiconductor Zn− ZnO core− shell nanobelts and nanotubes. J Phys Chem B 108(2):570–574

    Article  CAS  Google Scholar 

  87. Sun Y, Riley DJ, Ashfold MN (2006) Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates. J Phys Chem B 110(31):15186–15192

    Article  CAS  Google Scholar 

  88. Xu H, Tu X, Fan G, Wang Q, Wang X, Chu X (2020) Adsorption properties study of boron nitride fullerene for the application as smart drug delivery agent of anti-cancer drug hydroxyurea by density functional theory. J Mol Liq 318:114315

    Article  CAS  Google Scholar 

  89. Wang P, Yan G, Zhu X, Du Y, Chen D, Zhang J (2021) Heterofullerene MC59 (M = B, Si, Al) as potential carriers for hydroxyurea drug delivery. Nanomaterials 11(1):115

    Article  CAS  Google Scholar 

  90. Fraga S, Ransil BJ (1962) Studies in Molecular Structure. VII. Limited configuration interaction for selected first-row diatomics. J Chem Phys 36(5):1127–42

    Article  CAS  Google Scholar 

  91. Fonseca Guerra C, Handgraaf JW, Baerends EJ, Bickelhaupt FM (2004) Voronoi deformation density (VDD) charges: assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis. J Comput Chem 25(2):189–210

    Article  Google Scholar 

  92. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theoret Chim Acta 44(2):129–138

    Article  CAS  Google Scholar 

  93. Adnan A, Lam R, Chen H, Lee J, Schaffer DJ, Barnard AS et al (2011) Atomistic simulation and measurement of pH dependent cancer therapeutic interactions with nanodiamond carrier. Mol Pharm 8(2):368–374

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.M. Kadhim: conceptualization, methodology, software, writing, conceptualization, methodology, management and responsibility for the research activity planning and execution; S. Abdullaha, Z.T. Taban, N. Alnasoud: methodology, software, writing—review and editing; S.K. Hachim, S. Alomar: writing—original draft, methodology, software, review and editing.

Corresponding author

Correspondence to Mustafa M. Kadhim.

Ethics declarations

Ethical approval

Not required.

Consent to participate

Confirm.

Consent for publication

Confirm.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadhim, M.M., Taban, T.Z., Abdullaha, S.A. et al. Application of zinc oxide nano-tube as drug-delivery vehicles of anticancer drug. J Mol Model 29, 47 (2023). https://doi.org/10.1007/s00894-022-05426-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05426-y

Keywords

Navigation