Skip to main content
Log in

Designing of gigantic first-order hyperpolarizability molecules via joining the promising organic fragments: a DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A suitable substitution of carbazole with a π-spacer group like cyanoethynylethene offers exciting future opportunities in terms of smart nonlinear optical material. In the quest of better organic nonlinear optical material, we have designed a series of derivatives based on carbazole and cyanoethynylethene fragment combinations in a unique fashion by employing the density functional (DFT) methods. The calculated time-dependent density functional theory (TD-DFT) calculations infer that the gigantic first static hyperpolarizability (βtot) values are due to a lower energy gap and higher transition dipole moment for the crucial electronic transition. Furthermore, to see the in-depth execution for enhanced second-order nonlinear optics and the structure property relationship on nonlinear optics (NLO) behavior, we have performed frontier molecular orbitals (FMO), density of state (DOS), and transition density matrix (TDM). Furthermore, CAM-B3LYP functional-based calculated results infer that the designed molecule 10 show the first static hyperpolarizability is 923.93 × 10−30 esu which is 69 times larger than that of p-nitroaniline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Code availability

We have used Gaussian 16 and multiwfn 3.8 software.

References

  1. Green ML, Marder SR, Thompson ME, Bandy JA, Bloor D, Kolinsky PV, Jones RJ (1987) Synthesis and structure of (cis)-[1-ferrocenyl-2-(4-nitrophenyl)ethylene], an organotransition metal compound with a large second-order optical nonlinearity. Nat 330:360–362

    Article  CAS  Google Scholar 

  2. Eaton DF (1991) Nonlinear optical materials. Sci 253:281–287

    Article  CAS  Google Scholar 

  3. Zyss J, Ledoux I (1994) Nonlinear optics in multipolar media: theory and experiments. Chem rev 94:77–105

    Article  CAS  Google Scholar 

  4. Meyers F, Marder SR, Pierce BM, Bredas JL (1994) Electric field modulated nonlinear optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (.alpha., .beta., and .gamma.) and bond length alternation. J Am Chem Soc 116:10703–10714

    Article  CAS  Google Scholar 

  5. Marder SR, Torruellas WE, Blanchard-Desce M, Ricci V, Stegeman GI, Gilmour S, Bredas JL, Li J, Bublitz GU, Boxer SG (1997) Large molecular third-order optical nonlinearities in polarized carotenoids. Sci 276:1233–1236

    Article  CAS  Google Scholar 

  6. Bella SD (2001) Second-order nonlinear optical properties of transition metal complexes. Chem Soc Rev 30:355–366

    Article  Google Scholar 

  7. Maury O, Viau L, Senechal K, Corre B, Guégan JP, Renouard T, Ledoux I, Zyss JL, Bozec H (2004) Synthesis, linear, and quadratic-nonlinear optical properties of octupolar D3 and D2d bipyridyl metal complexes. Chem Eur J 10:4454–4466

    Article  CAS  Google Scholar 

  8. Mançois F, Pozzo JL, Pan J, Adamietz F, Rodriguez V, Ducasse L, Castet F, Plaquet A, Champagne B (2009) Two-way molecular switches with large nonlinear optical contrast. Chem Eur J 15:2560–2571

    Article  Google Scholar 

  9. Van Cleuvenbergen S, Asselberghs I, Garcia-Frutos EM, Gómez-Lor B, Clays K, Perez-Moreno J (2012) Dispersion overwhelms charge transfer in determining the magnitude of the first hyperpolarizability in triindole octupoles. J Phys Chem C 116:12312–12321

    Article  Google Scholar 

  10. Yamada S, Nakano M, Takahata M, Kishi R, Nitta T, Yamaguchi K (2004) Theoretical study on static second hyperpolarizabilities for several π-conjugated systems including nitrogen atoms: effects of charged defects and extension of π-conjugation. J Phys Chem A 108:4151–4155

    Article  CAS  Google Scholar 

  11. Chen W, Li ZR, Wu D, Li Y, Sun CC, Gu FL (2005) The structure and the large nonlinear optical properties of Li@ Calix [4] pyrrole. J Am Chem Soc 127:10977–10981

    Article  CAS  Google Scholar 

  12. Xu HL, Li ZR, Wu D, Wang BQ, Li Y, Gu FL, Aoki Y (2007) Structures and large NLO responses of new electrodes: Li-doped fluorocarbon chain. J Am Chem Soc 129:2967–2970

    Article  CAS  Google Scholar 

  13. Janjua MRSA, Amin M, Ali M, Bashir B, Khan MU, Iqbal MA, Guan W, Yan L, S, ZM (2012) A DFT study on the two‐dimensional second‐order nonlinear optical (NLO) response of terpyridine‐substituted hexamolybdates: physical insight on 2D inorganic–organic hybrid functional materials. Eur J Inorg chem 4:705–711

  14. Champagne B, Plaquet A, Pozzo JL, Rodriguez V, Castet F (2012) Nonlinear optical molecular switches as selective cation sensors. J Am Chem Soc 134:8101–8103

    Article  CAS  Google Scholar 

  15. Zhong RL, Zhang J, Muhammad S, Hu YY, Xu HL, Su ZM (2011) Boron/nitrogen substitution of the central carbon atoms of the biphenalenyl diradical π dimer: a novel 2e–12c bond and large NLO responses. Chem Eur J 17:11773–11779

    Article  CAS  Google Scholar 

  16. Wu HQ, Zhong RL, Kan YH, Sun SL, Zhang M, Xu HLSu, Z. M. (2013) After the electronic field: structure, bonding, and the first hyperpolarizability of HArF. J Comput Chem 34:952–957

    Article  CAS  Google Scholar 

  17. Karamanis P, Pouchan C (2012) Fullerene–C60 in contact with alkali metal clusters: prototype nano-objects of enhanced first hyperpolarizabilities. J Phys Chem C 116:11808–11819

    Article  CAS  Google Scholar 

  18. Koukaras EN, Zdetsis AD, Karamanis P, Pouchan C, Avramopoulos A, Papadopoulos MG (2012) Structural and static electric response properties of highly symmetric lithiated silicon cages: theoretical predictions. J Comput Chem 33:1068–1079

    Article  CAS  Google Scholar 

  19. De La Torre G, Vázquez P, Agullo-Lopez F, Torres T (2004) Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. Chem Rev 104:3723–3750

    Article  Google Scholar 

  20. Kanis DR, Ratner MA, Marks TJ (1994) Design and construction of molecular assemblies with large second-order optical nonlinearities Quantum chemical aspects. Chem Rev 94:195–242

    Article  CAS  Google Scholar 

  21. Zhong RL, Xu HL, Li ZR, Su ZM (2015) Role of excess electrons in nonlinear optical response. J Phys Chem Lett 6:612–619

    Article  CAS  Google Scholar 

  22. Meyers F, Marder SR, Pierce BM, Bredas JL (1994) Electric field modulated nonlinear optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (alpha. Beta. and .gamma.) and bond length alternation. J Am Chem Soc 116:10703–10714

    Article  CAS  Google Scholar 

  23. Saeed A, Muhammad S, Rehman SU, Bibi S, Al-Sehemi AG, Khalid M (2020) Exploring the impact of central core modifications among several push-pull configurations to enhance nonlinear optical response. J Mol Graphics Modell 100:107665

    Article  CAS  Google Scholar 

  24. Albert ID, Marks TJ, Ratner MA (1996) Rational design of molecules with large hyperpolarizabilities. Electric field, solvent polarity, and bond length alternation effects on merocyanine dye linear and nonlinear optical properties. J Phys Chem C 100:9714–9725

    Article  CAS  Google Scholar 

  25. Lou AJT, Marks TJ (2019) A twist on nonlinear optics: understanding the unique response of π-twisted chromophores. Acc of chem res 52:1428–1438

    Article  CAS  Google Scholar 

  26. Muhammad S, Minami T, Fukui H, Yoneda K, Kishi R, Shigeta Y, Nakano M (2012) Halide ion complexes of decaborane (B10H14) and their derivatives: noncovalent charge transfer effect on second-order nonlinear optical properties. J Phy Chem A 116:1417–1424

    Article  CAS  Google Scholar 

  27. Muhammad S, Al-Sehemi AG, Su Z, Xu H, Irfan A, Chaudhry AR (2017) First principles study for the key electronic, optical and nonlinear optical properties of novel donor-acceptor chalcones. J Mol Graphics Modell 72:58–69

    Article  CAS  Google Scholar 

  28. Migalska-Zalas AE, Korchi K, Chtouki T (2018) Enhanced nonlinear optical properties due to electronic delocalization in conjugated benzodifuran derivatives. Opt Quantum Electron 50:1–10

    Article  CAS  Google Scholar 

  29. Bredas JL, Adant C, Tackx P, Persoons A, Pierce BM (1994) Third-order nonlinear optical response in organic materials: theoretical and experimental aspects. Chem Rev 94:243–278

    Article  CAS  Google Scholar 

  30. Wang F, Langford S, Nakai H (2021) Robust design of D-π-A model compounds using digital structures for organic DSSC applications. J Mol Graphics Modell 102:107798

    Article  CAS  Google Scholar 

  31. Biaggio I (2022) The appeal of small molecules for practical nonlinear optics. Chem Eur J 28:e202103168

    Article  CAS  Google Scholar 

  32. Venkateswararao A, Thomas KJ, Lee CP, Li CT, Ho KC (2014) Organic dyes containing carbazole as donor and π-linker: optical, electrochemical, and photovoltaic properties. ACS appl mat & int 6:2528–2539

    Article  CAS  Google Scholar 

  33. Pérez-Díaz IM, McFeeters RF (2009) Modification of azo dyes by lactic acid bacteria. J app mic 107:584–589

    Article  Google Scholar 

  34. Khalid M, Ali A, Jawaria R, Asghar MA, Asim S, Khan MU, Hussain R, urRrehman MF, Ennis CJ, Akram MS (2020) First principles study of electronic and nonlinear optical properties of A-D–π–A and D–A–D–π–A configured compounds containing novel quinoline–carbazole derivatives. RSC Adv 10:22273–22283

    Article  CAS  Google Scholar 

  35. Khan MU, Ibrahim M, Khalid M, Jamil S, Al-Saadi AA, Janjua MRSA (2019) Quantum chemical designing of indolo [3, 2, 1-jk] carbazole-based dyes for highly efficient nonlinear optical properties. Chem Phy Lett 719:59–66

    Article  CAS  Google Scholar 

  36. Díaz JL, Dobarro A, Villacampa B, Velasco D (2001) Structure and optical properties of 2, 3, 7, 9-polysubstituted carbazole derivatives: experimental and theoretical studies. Chem Mater 13(8):2528–2536

    Article  Google Scholar 

  37. Wu J, Luo J, Cernetic N, Chen K, Chiang KS, Jen AKY (2016) PCBM-doped electro-optic materials: investigation of dielectric, optical and electro-optic properties for highly efficient poling. J Chem Mater C 4:10286–10292

    Article  CAS  Google Scholar 

  38. Mitra A, Jana G, Pal R, Gaikwad P, Sural S, Chattaraj PK (2021) Determination of stable structure of a cluster using convolutional neural network and particle swarm optimization. Theo Chem Acc 140:1–12

    Article  Google Scholar 

  39. Frisch ME, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone VPGA, Petersson GA, Nakatsuji HJRA, Li X (2016) Gaussian 16

  40. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem phy lett 39:51–57

    Article  Google Scholar 

  41. Autschbach J (2009) Charge-transfer excitations and time-dependent density functional theory: problems and some proposed solutions. Chem Phys Chem 10:1757–1760

    Article  CAS  Google Scholar 

  42. Dreuw A, Head-Gordon M (2005) Single-reference ab initio methods for the calculation of excited states of large molecules. Chem rev 105:4009–4037

    Article  CAS  Google Scholar 

  43. Song JWJYYLY (2022) Nonlinear optical properties and optimization strategies of D-π-A type phenylamine derivatives in the near-infrared region. Spectrochim Acta Part A Mol Biomol Spectrosc 280:121539–121543

    Article  Google Scholar 

  44. Venkateswararao A, Tyagi P, Thomas KJ, Chen PW, Ho KC (2014) Organic dyes containing indolo [2,3-b] quinoxaline as a donor: synthesis, optical and photovoltaic properties. Tetrahedron 70:6318–6327

    Article  CAS  Google Scholar 

  45. Srnec M, Solomon EI (2017) Frontier molecular orbital contributions to chlorination versus hydroxylation selectivity in the non-heme iron halogenase SyrB2. J Am Chem Soc 139:2396–2407

    Article  CAS  Google Scholar 

  46. Mahmood A, Khan SUD, Rana UA, Janjua MRSA, Tahir MH, Nazar MF, Song Y (2015) Effect of thiophene rings on UV/visible spectra and non-linear optical (NLO) properties of triphenylamine based dyes: a quantum chemical perspective. J Phy Org Chem 28:418–422

    Article  CAS  Google Scholar 

  47. O’Boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845

    Article  Google Scholar 

  48. Dağtepe P (2005) A computational study on the structure of allene polymers by using quantum chemical methods. Izmir Institute of Technology (Turkey). 28476142

  49. Oudar JL, Chemla DS (1977) Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. The J Chem Phy 66:2664–2668

    Article  CAS  Google Scholar 

  50. Oudar JD (1977) Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds. J Chem Phy 67:446–457

    Article  CAS  Google Scholar 

  51. Mehboob MY, Khan MU, Hussain R, Fatima R, Irshad Z, Adnan M (2020) Designing of near-infrared sensitive asymmetric small molecular donors for high-efficiency organic solar cells. J Theo & Comp Chem 19:2050034

    Article  CAS  Google Scholar 

  52. Duan YA, Geng Y, Li HB, Jin JL, Wu Y, Su ZM (2013) Theoretical characterization and design of small molecule donor material containing naphthodithiophene central unit for efficient organic solar cells. J Comput Chem 34:1611–1619

    Article  CAS  Google Scholar 

  53. Lu T, Chen F (2012) A multifunctional wavefunction analyzer: multiwfn. J Comput Chem 33:580–592

    Article  Google Scholar 

Download references

Funding

Science and Engineering Research Board (SERB) New Delhi (Ref. no. CRG/2019/001032) under core research grant to AS.

Author information

Authors and Affiliations

Authors

Contributions

RK and SKY performed the study and wrote the manuscript and RS performed some additional calculations and helped in manuscript preparation. AS executed the idea of research and checked the manuscript.

Corresponding author

Correspondence to Ajeet Singh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 640 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Yadav, S.K., Seth, R. et al. Designing of gigantic first-order hyperpolarizability molecules via joining the promising organic fragments: a DFT study. J Mol Model 29, 5 (2023). https://doi.org/10.1007/s00894-022-05401-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05401-7

Keywords

Navigation