Skip to main content
Log in

Comprehensive theoretical study on safety performance and mechanical properties of 3-nitro-1,2,4-triazol-5-one (NTO)–based polymer-bonded explosives (PBXs) via molecular dynamics simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

3-nitro-1,2,4-triazol-5-one (NTO)–based polymer-bonded explosives (PBXs) have been widely used in insensitive munitions, but the main properties of NTO-based PBXs such as compatibility, safety performance, and mechanical properties are rarely reported. In this work, molecular dynamics simulation was carried out to study interface interactions of NTO-based PBXs, in which hydroxy-terminated polybutadiene (HTPB), ethylene–vinyl acetate copolymer (EVA), glycidyl azide polymer (GAP), poly-3-nitratomethyl-3-methyl oxetane (Poly-NIMMO), and ester urethane (Estane5703) are selected as binders. The binding energy analysis indicates that the order of compatibility is NTO/GAP > NTO/Estane5703 > NTO/HTPB > NTO/Poly-NIMMO > NTO/EVA. Radial distribution function analysis results show that the interface interaction is mainly the hydrogen bond between H atoms of NTO and O atoms of Estane5703, HTPB, EVA, and Poly-NIMMO or N atoms of GAP. The values of cohesive energy density verify that the safety is NTO/GAP > NTO/Poly-NIMMO > NTO/HTPB > NTO/EVA > NTO/Estane5703. Mechanical properties results show that GAP and EVA would improve the plasticity of the systems effectively. Furthermore, it can be found that the most favorable interactions occur between the NTO (1 0 0) crystal face and binders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Badgujar DM, Talawar MB, Asthana SN, Mahulikar PP (2008) Advances in science and technology of modern energetic materials: an overview. J Hazard Mater 151(2–3):289–305. https://doi.org/10.1016/j.jhazmat.2007.10.039

    Article  CAS  Google Scholar 

  2. Baytos JF (1980) LASL explosive property data. University of California Press

    Google Scholar 

  3. Mathieu J, Stucki H (2004) Military high explosives. CHIMIA 58(6):383–389. https://doi.org/10.2533/000942904777677669

    Article  CAS  Google Scholar 

  4. Dong HS, Zhou FF (1984) High energy explosives and correlative physical properties. Science Press, Beijing

    Google Scholar 

  5. Li MM, Shen RQ, Li FS (2011) Molecular dynamics simulation of binding energies, mechanical properties and energetic performance of the RDX/BAMO propellant. Acta Phys-Chim Sin 27(6):1379–1385. https://doi.org/10.3866/PKU.WHXB20110601

    Article  CAS  Google Scholar 

  6. Song XY, Xing XL, Zhao SX, Ju XH (2019) Molecular dynamics simulation on TKX-50/fluoropolymer. Modell Simul Mater Sci Eng 28(1):015004. https://doi.org/10.1088/1361-651X/ab5497

    Article  Google Scholar 

  7. Lan GC, Jin SH, Wang DX, Li J, Lu ZY, Jing BC, Li LJ (2018) Investigation of the effect of the CAB/A3 system on HNIW-based PBXs using molecular dynamics. J Mol Model 24(7):1–9. https://doi.org/10.1007/s00894-018-3670-3

    Article  CAS  Google Scholar 

  8. Li SS, Xiao JJ (2021) Molecular dynamics simulations for effects of fluoropolymer binder content in CL-20/TNT based polymer-bonded explosives. Molecules 26(16):4876. https://doi.org/10.3390/molecules26164876

    Article  CAS  Google Scholar 

  9. Wang XJ, Xiao JJ (2017) Molecular dynamics simulation studies of the ε-CL-20/HMX co-crystal-based PBXs with HTPB. Struct Chem 28(6):1645–1651. https://doi.org/10.1007/s11224-017-0930-2

    Article  CAS  Google Scholar 

  10. Xiao HM, Li JS, Dong HS (2001) A quantum-chemical study of PBX: intermolecular interactions of TATB with CH2F2 and with linear fluorine-containing polymers. J Phys Org Chem 14(9):644–649. https://doi.org/10.1002/poc.403.abs

    Article  CAS  Google Scholar 

  11. Xiao JJ, Fang GY, Ji GF, Xiao HM (2005) Simulation investigations in the binding energy and mechanical properties of HMX-based polymer-bonded explosives. Chin Sci Bull 50(1):21–26. https://doi.org/10.1360/982004-147

    Article  CAS  Google Scholar 

  12. Xiao JJ, Huang YC, Hu YJ, Xiao HM (2005) Molecular dynamics simulation of mechanical properties of TATB/fluorine-polymer PBXs along different surfaces. Sci China, Ser B: Chem 48(6):504–510. https://doi.org/10.1360/042004-61

    Article  CAS  Google Scholar 

  13. Lu YY, Shu YJ, Liu N, Lu XM, Xu MH (2018) Molecular dynamics simulations on ε-CL-20-based PBXs with added GAP and its derivative polymers. RSC Adv 8(9):4955–4962. https://doi.org/10.1039/c7ra13517c

    Article  CAS  Google Scholar 

  14. Xu XJ, Xiao JJ, Huang H, Li JS, Xiao HM (2007) Molecular dynamics simulations on the structures and properties of ε-CL-20-based PBXs. Sci China, Ser B: Chem 50(6):737–745. https://doi.org/10.1007/s11426-007-0141-6

    Article  CAS  Google Scholar 

  15. Zhang M, Li C, Gao HQ, Fu W, Li YY, Tang LW, Zhou ZM (2016) Promising hydrazinium 3-nitro-1, 2, 4-triazol-5-one and its analogs. J Mater Sci 51(24):10849–10862. https://doi.org/10.1007/s10853-016-0296-7

    Article  CAS  Google Scholar 

  16. Singh G, Kapoor IPS, Tiwari SK, Felix PS (2001) Studies on energetic compounds: part 16. chemistry and decomposition mechanisms of 5-nitro-2, 4-dihydro-3H-1, 2, 4-triazole-3-one (NTO). J Hazard Mater 81(1–2):67–82. https://doi.org/10.1016/S0304-3894(00)00289-2

    Article  CAS  Google Scholar 

  17. Becuwe A, Delclos A (1993) Low-sensitivity explosive compounds for low vulnerability warheads. Propellants, Explos, Pyrotech 18(1):1–10. https://doi.org/10.1002/prep.19930180102

    Article  CAS  Google Scholar 

  18. Trzciński WA (2020) Study of shock initiation of an NTO-based melt-cast insensitive composition. Propellants, Explos, Pyrotech 45(9):1472–1477. https://doi.org/10.1002/prep.202000050

    Article  CAS  Google Scholar 

  19. Viswanath DS, Ghosh TK, Boddu VM (2018) 5-Nitro-2, 4-dihydro-3H-1, 2, 4-triazole-3-one (NTO). In: Emerging energetic materials: synthesis, physicochemical, and detonation properties. Springer, Dordrecht 163–211. https://doi.org/10.1007/978-94-024-1201-7_5

  20. Smith MW, Cliff MD (1999) NTO-based explosive formulations: a technology review.

  21. Zhou WJ, Ma YN, Wang KY, Wang M, Zhang G, Shao YH (2010) Interfacial interaction between NTO and bindings. Chin J Explos Propellants 33(4):40–43. https://doi.org/10.14077/j.issn.1007-7812.2010.04.010

    Article  CAS  Google Scholar 

  22. Hang GY, Yu WL, Wang T, Wang JT, Miao S (2019) Molecular dynamics investigation on crystal defect of HMX/NTO cocrystal explosive. Acta Armamentarii 40(1):49. https://doi.org/10.3969/j.issn.1000-1093.2019.01.007

    Article  Google Scholar 

  23. Du LXS, Jin SH, Shu QH, Li LJ, Chen K, Chen ML, Wang JF (2022) The investigation of NTO/HMX-based plastic-bonded explosives and its safety performance. Def Technol 18(1):72–80. https://doi.org/10.1016/j.dt.2021.04.002

    Article  Google Scholar 

  24. Yan QL, Zeman S, Elbeih A (2012) Recent advances in thermal analysis and stability evaluation of insensitive plastic bonded explosives (PBXs). Thermochim Acta 537:1–12. https://doi.org/10.1016/j.tca.2012.03.009

    Article  CAS  Google Scholar 

  25. Jaidann M, Lussier LS, Bouamoul A, Abou-Rachid H, Brisson J (2009) Effects of interface interactions on mechanical properties in RDX-based PBXs HTPB-DOA: molecular dynamics simulations. In: International conference on computational science. Springer, Berlin, Heidelberg, 131–140. https://doi.org/10.1007/978-3-642-01973-9_15.

  26. Brochu D, Abou-Rachid H, Soldera A, Brisson J (2017) Sensitivity of polymer-bonded explosives from molecular modeling data. Int J Energ Mater Chem Propul 16(4). https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.2018021264.

  27. Xiao JJ, Ma XF, Zhu W, Huang YC, Xiao HM, Huang H, Li JS (2007) Molecular dynamics simulations of polymer-bonded explosives (PBXs): modeling, mechanical properties and their dependence on temperatures and concentrations of binders. Propellants, Explos, Pyrotech 32(5):355–359. https://doi.org/10.1002/prep.200700039

    Article  CAS  Google Scholar 

  28. Xiao JJ, Wang WR, Chen J, Ji GF, Zhu W, Xiao HM (2012) Study on the relations of sensitivity with energy properties for HMX and HMX-based PBXs by molecular dynamics simulation. Phys B (Amsterdam, Neth) 407(17):3504–3509. https://doi.org/10.1016/j.physb.2012.05.010

    Article  CAS  Google Scholar 

  29. Zhu W, Wang XJ, Xiao JJ, Zhu WH, Sun H, Xiao HM (2009) Molecular dynamics simulations of AP/HMX composite with a modified force field. J Hazard Mater 167(1–3):810–816. https://doi.org/10.1016/j.jhazmat.2009.01.052

    Article  CAS  Google Scholar 

  30. Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 102(38):7338–7364. https://doi.org/10.1021/jp980939v

    Article  CAS  Google Scholar 

  31. Hang GY, Yu WL, Wang T, Wang JT, Li Z (2018) Theoretical investigations on stabilities, sensitivity, energetic performance and mechanical properties of CL-20/NTO cocrystal explosives by molecular dynamics simulation. Theor Chem Acc 137(8):1–14. https://doi.org/10.1007/s00214-018-2297-x

    Article  CAS  Google Scholar 

  32. Wang JY, Jin SH, Chen SS, Li LJ, Wang DX, Lu ZY, Wang N, Wang JF (2018) Molecular dynamic simulations for FOX-7 and FOX-7 based PBXs. J Mol Model 24(7):1–9. https://doi.org/10.1007/s00894-018-3687-7

    Article  CAS  Google Scholar 

  33. Yu YH, Chen SS, Li X, Zhu JP, Liang H, Zhang XX, Shu QH (2016) Molecular dynamics simulations for 5, 5′-bistetrazole-1, 1′-diolate (TKX-50) and its PBXs. RSC Adv 6(24):20034–20041. https://doi.org/10.1039/c5ra27912g

    Article  CAS  Google Scholar 

  34. Zhao Y, Xie WX, Qi XF, Liu YF, Tang QF, Song KG, Zhang W (2019) Comparison of the interfacial bonding interaction between GAP matrix and ionic/non-ionic explosive: computation simulation and experimental study. Appl Surf Sci 497:143813. https://doi.org/10.1016/j.apsusc.2019.143813

    Article  CAS  Google Scholar 

  35. Li JZ, Fan XZ, Zhang GF, Yu HJ, Tang QF, Fu XL (2016) Hardener systems of energetic binder PolyNIMMO. Acta Armamentarii 37(8):1401. https://doi.org/10.3969/j.issn.1000-1093.2016.08.009

    Article  Google Scholar 

  36. Fu JB, Wang BG, Chen YF, Li YC, Tan X, Wang BY, Ye BY (2021) Computational analysis the relationships of energy and mechanical properties with sensitivity for FOX-7 based PBXs via MD simulation. R Soc Open Sci 8(2):200345. https://doi.org/10.1098/rsos.200345

    Article  CAS  Google Scholar 

  37. Li J, Jin SH, Lan GC, Chen K, Liu W, Zhang XP, Chen SS, Li LJ (2020) A molecular dynamics study and detonation parameters calculation of 5, 5’-dinitramino-3, 3’-bi [1, 2, 4-triazolate] carbohydrazide salt (CBNT) and its PBXs. J Energ Mater 38(3):283–294. https://doi.org/10.1080/07370652.2019.1684595

    Article  CAS  Google Scholar 

  38. Zhurova EA, Pinkerton AA (2001) Chemical bonding in energetic materials: β-NTO. Acta Crystallogr, Sect B: Struct Sci 57(3):359–365. https://doi.org/10.1107/S0108768100020048

    Article  CAS  Google Scholar 

  39. Trzciński W, Belaada A (2016) 1, 1-Diamino-2, 2-dinitroethene (DADNE, FOX-7)–Properties and formulations (a review). Cent Eur J Energ Mater 13(2):527-544. https://doi.org/10.22211/cejem/65000

  40. Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72(4):2384–2393. https://doi.org/10.1063/1.439486

    Article  CAS  Google Scholar 

  41. Karasawa N, III Goddard WA (2002) Force fields, structures, and properties of poly (vinylidene fluoride) crystals. Macromolecules 25(26):7268–7281. https://doi.org/10.1021/ma00052a031

    Article  Google Scholar 

  42. Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101(5):4177–4189. https://doi.org/10.1063/1.467468

    Article  CAS  Google Scholar 

  43. Li J, Jin SH, Lan GC, Ma X, Ruan J, Zhang B, Chen SS, Li LJ (2018) Morphology control of 3-nitro-1, 2, 4-triazole-5-one (NTO) by molecular dynamics simulation. Cryst Eng Comm 20(40):6252–6260. https://doi.org/10.1039/c8ce00756j

    Article  CAS  Google Scholar 

  44. Brostow W (1977) Radial distribution function peaks and coordination numbers in liquids and in amorphous solids. Chem Phys Lett 49(2):285–288. https://doi.org/10.1016/0009-2614(77)80588-5

    Article  CAS  Google Scholar 

  45. Hu WJ, Gou RJ, Zhang SH, Liu Y, Shang FQ, Chen YH, Bai H (2022) Theoretical investigation on the intermolecular interactions between 3-nitro-1, 2, 4-triazol-5-one and 2, 6-diamino-3, 5-dinitropyrazine-1-oxide using DFT methods. Chem Pap 76(5):2747–2758. https://doi.org/10.1007/s11696-021-02059-y

    Article  CAS  Google Scholar 

  46. Hang GY, Yu WL, Wang T, Wang JT (2019) Theoretical investigations on structures, stability, energetic performance, sensitivity, and mechanical properties of CL-20/TNT/HMX cocrystal explosives by molecular dynamics simulation. J Mol Model 25(1):1–15. https://doi.org/10.1007/s00894-018-3887-1

    Article  CAS  Google Scholar 

  47. Rice JR (1972) Elastic-plastic fracture mechanics. Brown University, Providence, RI Division of Engineering. https://doi.org/10.2172/4620799

    Article  Google Scholar 

  48. Watt JP, Davies GF, O’Connell RJ (1976) The elastic properties of composite materials. Rev Geophys 14(4):541–563. https://doi.org/10.1029/RG014i004p00541

    Article  CAS  Google Scholar 

  49. XCII Pugh SF (1954) Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond Edinb Dubl Phil Mag 45(367):823–843. https://doi.org/10.1080/14786440808520496

    Article  CAS  Google Scholar 

  50. Xiao JJ, Zhu WH, Zhu W, Xiao HM (2013) Molecular dynamics simulation of high energy materials. Science Press, Beijing, pp 54–66

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ying Huang and Ruijun Gou conceived and designed the study. Ying Huang and Xiaofeng Yuan performed simulation calculations. Ying Huang wrote the paper. Ruijun Gou, Yahong Chen, and Shuhai Zhang reviewed and edited the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Ruijun Gou.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Gou, R., Zhang, S. et al. Comprehensive theoretical study on safety performance and mechanical properties of 3-nitro-1,2,4-triazol-5-one (NTO)–based polymer-bonded explosives (PBXs) via molecular dynamics simulation. J Mol Model 28, 406 (2022). https://doi.org/10.1007/s00894-022-05393-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05393-4

Keywords

Navigation