Skip to main content

Advertisement

Log in

Computer simulation and modeling the metal to insulating transition of liquid mercury via pair, empirical, and many-body potentials

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this study, Monte Carlo simulations were carried out to detect the metal–insulator transition in liquid mercury by changing the static properties at the microscopic scale. In the simulations pair, empirical, and many-body potentials govern metal–metal interactions in the canonical ensemble. The structural and thermodynamic changes over a wide temperature range from 773 to 1773 K are described in the first coordination shell and residual internal energy, respectively. The results reveal that during the simulated heating process, the properties undergo significant change at 1673 K, which is in connection with the metal-nonmetal transition in the liquid. These findings coincide with the experimental observations of this thermodynamic phenomenon. Notably, the free energy of association that renders the system to this thermodynamic state is estimated.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Spencer AJ (2000) Dental amalgam and mercury in dentistry. Aust Dent J 45:224–234. https://doi.org/10.1111/j.1834-7819.2000.tb00256.x

    Article  CAS  Google Scholar 

  2. Iakovlev A, Bedrov D, Müller M (2015) Surface tension of liquid mercury: a comparison of density-dependent and density-independent force fields. Eur Phys J B 88:1. https://doi.org/10.1140/epjb/e2015-60594-2

    Article  CAS  Google Scholar 

  3. Iakovlev A, Bedrov D, Müller M, (2016) Alkyl-based surfactants at a liquid mercury surface: computer simulation of structure, self-assembly, and phase behavior. J Phys Chem Lett 7:1546–1553. https://doi.org/10.1021/acs.jpclett.6b00494

    Article  CAS  Google Scholar 

  4. Elfassy E, Mastai Y, Pontoni D, Deutsch M (2016) Liquid-mercury-supported Langmuir films of ionic liquids: isotherms, structure, and time evolution. Langmuir 32:3164–3173. https://doi.org/10.1021/acs.langmuir.6b00196

    Article  CAS  Google Scholar 

  5. Sun X, Hwang JY, Xie S (2011) Density functional study of elemental mercury adsorption on surfactants. Fuel 90:1061–1068. https://doi.org/10.1016/j.fuel.2010.10.043

    Article  CAS  Google Scholar 

  6. Galashev AY (2016) Modeling of forced desorption processes in a regenerable graphene sorbent for elemental mercury capture. J Phys Chem C 120:13263–13274. https://doi.org/10.1021/acs.jpcc.6b02826

    Article  CAS  Google Scholar 

  7. Abbas T, Gonfa G, Lethesh KC, Mutalib MA, btAbai M, Cheun KY, Khan E (2016) Mercury capture from natural gas by carbon supported ionic liquids: synthesis, evaluation and molecular mechanism. Fuel 177:296–303. https://doi.org/10.1016/j.fuel.2016.03.032

    Article  CAS  Google Scholar 

  8. Liu Y, Adewuyi YG (2016) A review on removal of elemental mercury from flue gas using advanced oxidation process: chemistry and process. Chem Eng Res Des 112:199–250. https://doi.org/10.1016/j.cherd.2016.06.024

    Article  CAS  Google Scholar 

  9. Polishuk I, Nakonechny F, Brauner N (2016) Predicting phase behavior of metallic mercury in liquid and compressed gaseous hydrocarbons. Fuel 174:197–205. https://doi.org/10.1016/j.fuel.2016.02.002

    Article  CAS  Google Scholar 

  10. Landau LD, Zeldovich YB (1943) On the relation between the liquid and the gaseous states of metals. Acta Physicochim USSR 18:194–196

    CAS  Google Scholar 

  11. Kozhevnikov VF, Arnold DI, Naurzakov SP (1995) Experimental study of phase transitions in mercury. Int J Thermophys 16:619–628. https://doi.org/10.1007/BF01438847

    Article  CAS  Google Scholar 

  12. Hoshino K, Tanaka S, Shimojo F (2007) Dynamical structure of fluid mercury: molecular-dynamics simulations. J Non Cryst Solids 353:3389–3393. https://doi.org/10.1016/j.jnoncrysol.2007.05.089

    Article  CAS  Google Scholar 

  13. Kresse G (1996) Ab initio molecular dynamics applied to the dynamics of liquid metals and to the metal-non-metal transition. J Non Cryst Solids 205:833–840. https://doi.org/10.1016/S0022-3093(96)00314-6

    Article  Google Scholar 

  14. Calderín L, González LE, González DJ (2011) Static dynamic and electronic properties of expanded fluid mercury in the metal–nonmetal transition range An ab initio study. J Condens Matter Phys 23:375105. https://doi.org/10.1088/0953-8984/23/37/375105

    Article  CAS  Google Scholar 

  15. Hong X (2007) Structural variation of expanded fluid mercury during M-NM transition: a reverse Monte Carlo study. J Non Cryst Solids 353:3399–3404. https://doi.org/10.1016/j.jnoncrysol.2007.05.091

    Article  CAS  Google Scholar 

  16. Ghatee MH, Bahadori M (2004) Density-dependent equations of state for metal, nonmetal, and transition states for compressed mercury fluid. J Phys Chem B 108:4141–4146. https://doi.org/10.1021/jp035940v

    Article  CAS  Google Scholar 

  17. Endo H (1984) Metal-nonmetal transitions in liquids under pressure. J Non Cryst Solids 61:1–2. https://doi.org/10.1016/0022-3093(84)90522-2

    Article  Google Scholar 

  18. Kitamura H (2007) The role of attractive many-body interaction in the gas–liquid transition of mercury. J Condens Matter Phys 19:072102. https://doi.org/10.1088/0953-8984/19/7/072102

    Article  CAS  Google Scholar 

  19. Nagel S, Redmer R, Röpke G (1996) Equation of state and structure factor of mercury. J Non Cryst Solids 205:247–250. https://doi.org/10.1016/S0022-3093(96)00232-3

    Article  Google Scholar 

  20. Kobayashi K, Kajikawa H, Hiejima Y, Hoshino T, Yao M (2007) A precursor of liquid–liquid coexistence in the metal–nonmetal transition range of fluid mercury. J Non Cryst Solids 353:3362–3365. https://doi.org/10.1016/j.jnoncrysol.2007.05.084

    Article  CAS  Google Scholar 

  21. Ayrinhac S, Gauthier M, Bove LE, Morand M, Le Marchand G, Bergame F, Philippe J, Decremps F (2014) Equation of state of liquid mercury to 520 K and 7 GPa from acoustic velocity measurements. J Chem Phys 140:244201. https://doi.org/10.1063/1.4882695

    Article  CAS  Google Scholar 

  22. Inui M, Ishikawa D, Matsuda K, Tamura K, Baron AQ (2008) Experimental techniques of high-resolution inelastic X-ray scattering measurements for supercritical metallic fluids at high temperature and high pressure using synchrotron radiation at SPring-8. J Phys Condens Matter. https://doi.org/10.5488/CMP.11.1.83

  23. Inui M, Matsuda K, Ishikawa D, Tamura K, Ohishi Y (2007) Medium-range fluctuations accompanying the metal-nonmetal transition in expanded fluid hg. Phys Rev Lett 98:185504. https://doi.org/10.1103/PhysRevLett.98.185504

    Article  CAS  Google Scholar 

  24. Levin M, Schmutzler RW (1984) The specific heat of mercury at sub-and supercritical temperatures and pressures. J Non Cryst Solids 61:83–88. https://doi.org/10.1016/0022-3093(84)90534-9

    Article  Google Scholar 

  25. Guell OA, Holcombe JA (1990) Analytical applications of Monte Carlo techniques. Anal Chem 62:529A-A542. https://doi.org/10.1021/ac00208a001

    Article  CAS  Google Scholar 

  26. Karimi H, Ghatee MH, Davatolhagh S (2019) Modeling the annealing and thermal stability of silver dental amalgam. J Mol Model 25:1–8. https://doi.org/10.1007/s00894-019-4193-2

    Article  CAS  Google Scholar 

  27. Toth G (2003) An iterative scheme to derive pair potentials from structure factors and its application to liquid mercury. J Chem Phys 118:3949–3955. https://doi.org/10.1063/1.1543142

    Article  CAS  Google Scholar 

  28. Belashchenko DK (2006) Application of the embedded atom model to liquid metals: Liquid mercury. High Temp 44:675–686. https://doi.org/10.1007/s10740-006-0082-3

    Article  CAS  Google Scholar 

  29. Belashchenko DK (2002) The simulation of liquid mercury by diffraction data and the inference of interparticle potential. High Temp 40:212–221. https://doi.org/10.1023/A:1015299006040

    Article  CAS  Google Scholar 

  30. Raabe G, Sadus RJ (2003) Molecular simulation of the vapor–liquid coexistence of mercury. J Chem Phys 119:6691–6697. https://doi.org/10.1063/1.1605381

    Article  CAS  Google Scholar 

  31. Belashchenko DK (2013) Application of the embedded atom model to liquid mercury. High Temp 51:40–48. https://doi.org/10.1134/S0018151X13010021

    Article  CAS  Google Scholar 

  32. Belashchenko DK (2013) Erratum to: “Application of the embedded atom model to liquid mercury.” High Temp 51:878. https://doi.org/10.1134/S0018151X13070018

    Article  CAS  Google Scholar 

  33. Bomont JM, Bretonnet JL (2006) An effective pair potential for thermodynamics and structural properties of liquid mercury. J Chem Phys 124:054504. https://doi.org/10.1063/1.2166384

    Article  CAS  Google Scholar 

  34. Ghatee MH, Karimi H, Shekoohi K (2015) Structural, mechanical and thermodynamical properties of silver amalgam filler: a Monte Carlo simulation study. J Mol Liq 211:96–104. https://doi.org/10.1016/j.molliq.2015.06.062

    Article  CAS  Google Scholar 

  35. Tao DP (2005) Prediction of the coordination numbers of liquid metals. Metall Mater Trans A 36:3494–3497. https://doi.org/10.1007/s11661-005-0023-5

    Article  Google Scholar 

  36. Tamura K, Inui M, Matsuda K, Ishikawa D (2007) Structural instability and the metal–nonmetal transition in expanded fluid metals. J Non Cryst Solids 353:3348–3357. https://doi.org/10.1016/j.jnoncrysol.2007.05.124

    Article  CAS  Google Scholar 

  37. Inui M, Ishikawa D, Matsuda K, Tamura K, Tsutsui S, Baron AQ (2005) Observation of fast sound in metal–nonmetal transition in liquid Hg. J Phys Chem Solids 66:2223–2229. https://doi.org/10.1016/j.jpcs.2005.09.021

    Article  CAS  Google Scholar 

  38. Tamura K, Hosokawa S (1998) Structural studies of expanded fluid mercury up to the liquid-vapor critical region. Phys Rev B 58:9030. https://doi.org/10.1103/PhysRevB.58.9030

    Article  CAS  Google Scholar 

  39. Franz JR (1986) Metal-nonmetal transition in expanded liquid mercury. Phys Rev lett 57:889. https://doi.org/10.1103/PhysRevLett.57.889

    Article  CAS  Google Scholar 

  40. Timko J, De Castro A, Kuyucak S (2011) Ab initio calculation of the potential of mean force for dissociation of aqueous Ca–Cl. J Chem Phys 134:204510. https://doi.org/10.1063/1.3595261

    Article  CAS  Google Scholar 

  41. Song W, Biswas R, Maroncelli M (2000) Intermolecular interactions and local density augmentation in supercritical solvation: a survey of simulation and experimental results. J Phys Chem A 104:6924–6939. https://doi.org/10.1021/jp000888d

    Article  CAS  Google Scholar 

  42. Desgranges C, Delhommelle J (2014) Thermodynamics of phase coexistence and metal–nonmetal transition in mercury: assessment of effective potentials via expanded Wang-Landau simulations. J Phys Chem B 118:3175–3182. https://doi.org/10.1021/jp500577t

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is indebted to the research council of the Shiraz University for the financial supports. Also, the author would like to express his sincere thanks to Prof. Belashchenko from the Moscow State Institute of Steel and Alloys, and Prof. U.K. Deiters from the University of Cologne for their discussions, and Dr. Jean-Marc Bomont from the University of Lorraine for supplied g (r) data.

Author information

Authors and Affiliations

Authors

Contributions

Hedayat Karimi: conceptualization, methodology, investigation, and writing the manuscript.

Corresponding author

Correspondence to Hedayat Karimi.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 77 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, H. Computer simulation and modeling the metal to insulating transition of liquid mercury via pair, empirical, and many-body potentials. J Mol Model 28, 377 (2022). https://doi.org/10.1007/s00894-022-05372-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05372-9

Keywords

Navigation