Skip to main content
Log in

Electronic, non-linear optical, optoelectronic, and thermodynamic properties of undoped and doped bis (ethylenedithio) tetraselenafulvalene (BETS) (C10H8S4Se4) molecule: first study using ab initio investigation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We have performed the ab initio calculation of the undoped and doped molecules bis (ethylenedithio) tetraselenafulvalene (BETS). Carbone (C) atoms have been substituted by Boron (B) to investigate their effects on the electronic structure and nonlinear optical, optoelectronic, and thermodynamic properties of BETS molecule. The RHF and hybrid density functional theories (WB97XD, B3PW91, and B3LYP) methods were applied, using the cc-pVDZ basis set. We found that the energy gap (Egap) of the doped molecules are respectively 2.476 eV and 2.569 eV for C8B2H8S4Se4 and C7B3H8S4Se4 with B3LYP/cc-pVDZ basis set, lower than one of the undoped molecule (3.316 eV). The significant increase values of polarizability (˂α˃) and first order hyperpolarizability (β) of the doped compounds, especially in C8B2H8S4Se4 (< α >  = 4.5315 × 10−23 esu, β = 22,672.27 × 10−33 esu and < α >  = 4.518 × 10−23 esu, β = 23,657.43 × 10−33 esu respectively for B3LYP and B3PW91) compared to those of the undoped molecule (< α >  = 4.3602 × 10−23 esu, β = 1290.38 × 10−33 esu, and < α >  = 4.518 × 10−23 esu) show that the new molecules have a good nonlinear optical property. Results suggest that these molecules doped with boron are a potential candidate as semiconductors compounds and nonlinear optical materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Akamatu H, Inokuchi H, Matsunaga Y (1954) Electrical conductivity of the perylene–bromine complex. Nature 173(4395):168–69. https://doi.org/10.1038/173168a0

    Article  Google Scholar 

  2. Tchangnwa Nya F, Ejuh GW, Ndjaka JMB (2017) Theoretical study of optoelectronic and thermodynamic properties of molecule 4- [2-(2-N, N-dihydroxy amino thiophene)vinyl] benzenamine: influence of hydroxyl position. Mater Lett 202:89–95. https://doi.org/10.1016/j.matlet.2017.05.064

    Article  CAS  Google Scholar 

  3. Kato R, Kobayashi H, Kobayashi A (1991) Synthesis and properties of bis (ethylenedithio)tetraselenafulvalene (BEDT-TSeF) compounds. Synth Metals, Proc Int Conf Sci Technol Synth Metals 42(1):2093–96. https://doi.org/10.1016/0379-6779(91)92024-C

    Article  CAS  Google Scholar 

  4. Courcet T, Malfant I, Pokhodnia K, Cassoux P (1998) Bis (ethylenedithio)tetraselenafulvalene: short-cut synthesis, X-ray crystal structure and π-electron density distribution. New J Chem 22(6):585–89

    Article  CAS  Google Scholar 

  5. Schumaker RR, Lee VY, Engler EM (1983) New synthetic approaches to tetrathiafulvalene derivatives: systematic modifications of BEDT-TTF and TMTTF donors. Le J de Physique Colloques 44(C3):C3-1139-C3-1145. https://doi.org/10.1051/jphyscol/1983156

    Article  Google Scholar 

  6. Kato R, Kobayashi H, Kobayashi A (1991) Synthesis and properties of bis (ethylenedithio)tetraselenafulvalene (BEDT-TSeF) compounds. Synth Metals 42(1–2):2093–96. https://doi.org/10.1016/0379-6779(91)92024-C

    Article  CAS  Google Scholar 

  7. Kobayashi H, Naito T, Sato A, Kawano K, Kobayashi A, Tanaka H, Saito T, Tokumoto M, Brossard L, Cassoux P (1996) New BETS superconductors and metals with tetrahedral non-magnetic and magnetic anions (BETS= bis (ethylenedithio) tetraselenafulvalene). Mol Cryst Liq Cryst Sci Technol. Section A. Mol Cryst Liq Cryst 284(1):61–72

    Article  CAS  Google Scholar 

  8. Hiraki KI, Takahashi T, Akiba H, Nishio Y, Zhou B (2020) Microscopic observation of π spin polarization by d localized spin in λ type BETS based organic superconductors. Crystals 10(11):1055

    Article  CAS  Google Scholar 

  9. Kobayashi H, Tomita H, Udagawa T, Naito T, Kobayashi A (1995) New organic superconductor, λ-(BETS)2GaCl4 and metal-insulator transition of BETS conductor with magnetic anions (BETS=bis (ethylenedithio)tetraselenafulvalene). Synth Metals 70(1–3):867–70. https://doi.org/10.1016/0379-6779(94)02683-P

    Article  CAS  Google Scholar 

  10. Wong KM, Khan W, Shoaib M, Shah U, Khan SH, Murtaza G (2018) Ab initio investigation of the structural, electronic and optical properties of the Li2In2XY6 (X = Si, Ge; Y = S, Se) compounds. J Electron Mater 47(1):566–76. https://doi.org/10.1007/s11664-017-5805-1

    Article  CAS  Google Scholar 

  11. OlingaMbala GF, Mveme CDD, Ntieche Z, Ejuh GW, Ndjaka JMB, Ottou Abe MT (2021) Effect of chlorine and bromine on the nonlinear optical, electronic, optoelectronic and thermodynamic properties on the BEDT-TTF molecule: ab-initio and DFT calculation. Opt Quan Elec 53:576. https://doi.org/10.1007/s11082-021-03211-4

    Article  CAS  Google Scholar 

  12. OlingaMbala GF, Ottou Abe MT, Ntieche Z, Ejuh GW, Ndjaka JMB (2021) Ab initio investigation of nonlinear optical, electronic, and thermodynamic properties of BEDT-TTF molecule: doping with boron. Heliyon 7(7):e07461. https://doi.org/10.1016/j.heliyon.2021.e07461

    Article  CAS  Google Scholar 

  13. MJEA Frisch, G. W. Trucks, H. Bernhard Schlegel, Gustavo E. Scuseria, Michael A. Robb, James R. Cheeseman, Giovanni Scalmani, Vincenzo Barone, Benedetta Mennucci, et GAea Petersson. (2009) gaussian 09, Revision d. 01, Gaussian . Inc., Wallingford CT 201.

  14. Dennington RT, Keith JM (2016) Gauss View, Version 6. SemichemInc, Shawnee Mission KS

    Google Scholar 

  15. Ejuh GW, Samuel Nouemo F, Nya Tchangnwa, Ndjaka JMB (2016) Modeling of the electronic, optoelectronics, photonic and thermodynamics properties of 1,4-Bis(3-carboxyl-3-Oxo-Prop-1-Enyl) benzene molecule. J Iran Chem Soc 13(11):2039–48. https://doi.org/10.1007/s13738-016-0921-z

    Article  CAS  Google Scholar 

  16. Ejuh GW, Ottou Abe MT, Ghislain Tchuen, Ndjaka JMB (2018) Ab initio and DFT studies on the donor–acceptor molecules 1,2,3-trihydroxy-9,10-anthraquinone; 1-(methylamino) anthraquinone; 2-phenyl quinoxaline and 2-(4-aminophenyl) quinoxaline. Mater Focus 7(1):37–44. https://doi.org/10.1166/mat.2018.1473

    Article  CAS  Google Scholar 

  17. Ejuh GW, Nouemo S, Tchangnwa Nya F, Ndjaka JMB (2016) Computational determination of the electronic and nonlinear optical properties of the molecules 2-(4-aminophenyl) quinoline, 4-(4-aminophenyl) quinoline, anthracene, anthraquinone and phenanthrene. Mater Lett 178:221–26. https://doi.org/10.1016/j.matlet.2016.04.097

    Article  CAS  Google Scholar 

  18. Ejuh GW, Ottou Abe MT, Ndjaka JMB, Tchuen G (2018) Ab initio and DFT studies on the donor–acceptor molecules 1,2,3-trihydroxy-9,10-anthraquinone; 1-(methylamino) anthraquinone; 2-phenyl quinoxaline and 2-(4-aminophenyl) quinoxaline, Mater. Focus 2018 . Mater Focus 7. https://doi.org/10.1166/mat.2018.1473.

  19. Ejuh GW, Ottou Abe MT, Tchangwa Nya F, Ndjaka JMB (2018) Prediction of electronic structure, dielectric and thermodynamical properties of flurbiprofen by density functional theory calculation. Karbala Int J Mod Sci 4(1):12–20. https://doi.org/10.1016/j.kijoms.2017.10.001

    Article  Google Scholar 

  20. Pearson RG (2005) Chemical hardness and density functional theory. J Chem Sci 117(5):369–77. https://doi.org/10.1007/BF02708340

    Article  CAS  Google Scholar 

  21. Yang W, Parr RG (1985) Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc Natl Acad Sci 82(20):6723–6726

    Article  CAS  Google Scholar 

  22. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121(9):1922–24. https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

  23. Tang G, Zhao J, Jiang Z, Kou S, Ju X, Wei C (2012) dft and ab initio study on non-linear optical (NLO) properties of some organic complexes with different conjugate linker and substituent groups ». Optics Spectrosc 113(3):240–58. https://doi.org/10.1134/S0030400X12090068

    Article  CAS  Google Scholar 

  24. Jiang YJ, Liu ZZ, Liu HX, Cui WY, Wang N, Liu DS, Ge XW (2012) DFT study on nonlinear optical properties of lithium-doped corannulene. Chin Sci Bull 57(34):4448–4452

    Article  CAS  Google Scholar 

  25. Chen W, Li ZR, Wu D, Li Y, Sun CC, Gu FL (2005) The structure and the large nonlinear optical properties of Li@Calix[4]pyrrole. J Am Chem Soc 127(31):10977–81. https://doi.org/10.1021/ja050601w

    Article  CAS  PubMed  Google Scholar 

  26. Zou G, Ok KM (2020) Novel ultraviolet (UV) nonlinear optical (NLO) materials discovered by chemical substitution-oriented design. Chem Sci 11(21):5404–5409. https://doi.org/10.1039/D0SC01936D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Muttannavar V, Melavanki RM, Bhavya P, Kusanur R, Patil NR, Naik LR (2018) Non-linear optical properties study of two heterocyclic compounds. Int J Life Sci Pharma Res 8(3):24–30

    Google Scholar 

  28. Pimenta ÂCM, Andrade-Filho T, Manzoni V, Del Nero J, Gester R (2019) Giant values obtained for first hyperpolarizabilities of methyl orange: a DFT investigation. Theor Chem Acc 138(2):27. https://doi.org/10.1007/s00214-018-2406-x

    Article  CAS  Google Scholar 

  29. Saji RS, Prasana JC, Muthu S, George J, Kuruvilla TK, Raajaraman BR (2020) Spectroscopic and quantum computational study on naproxen sodium. SpectrochimicaActa PartA Molecular and Biomolecular Spectroscopy 226:117614. https://doi.org/10.1016/j.saa.2019.117614

    Article  CAS  Google Scholar 

  30. Muthu S, UmaMaheswari J (2012) Quantum mechanical study and spectroscopic (FT-IR, FTRaman, 12C, 1H, UV) study, first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 4-[(4-aminobenzene)sulfonyl]aniline by ab initio HF and density functional method. Spectrochim Acta Part A: Mol Biomol Spectrosc 92:154–163

    Article  CAS  Google Scholar 

  31. Kaatz P, Donley EA, Shelton DP (1998) A comparison of molecular hyperpolarizabilities from gas and liquid phase measurements. J Chem Phys 108(3):849–856. https://doi.org/10.1063/1.475448

    Article  CAS  Google Scholar 

  32. Robert Willardson K, Eicke Weber R (2001) Processing and properties of compound semiconductors. Elsevier.

  33. Yang C-J, Jenekhe SA (1995) Conjugated aromatic polyimines. 2.Synthesis, structure, and properties of new aromatic polyazomethines. Macromolecules 28:1180–1196

    Article  CAS  Google Scholar 

  34. Ottou Abe MT, Nzia CL, SidjuiSidjui L, YossaKamsi RA, Mveme CDD, TadjouteuAssatse Y, Ndjaka JMB, Ejuh GW (2021) Predictive calculation of structural, nonlinear optical, electronic and thermodynamic properties of andirobin molecule from ab initio and DFT methods. SN Appl Sci 3(9):768. https://doi.org/10.1007/s42452-021-04749-4

    Article  CAS  Google Scholar 

  35. Midoune A, Messaoudi A (2020) DFT/TD-DFT computational study of the tetrathiafulvalene-1,3-benzothiazole molecule to highlight its structural, electronic, vibrational and non-linear optical properties. C R Chim 23(2):143–158. https://doi.org/10.5802/crchim.12

    Article  CAS  Google Scholar 

  36. Günter P (auth.) (2000) Nonlinear optical effects and materials. 1re éd. Springer Series in Optical Sciences 72. Springer-Verlag Berlin Heidelberg,.

Download references

Acknowledgements

This work was supported by Professor Geh Wilson Ejuh and their Mentor Emeritus Professor A.N. Singh through providing the Gaussian code.

Author information

Authors and Affiliations

Authors

Contributions

All authors listed have significantly contributed to the development and the writing of.

this article.

Corresponding author

Correspondence to Martin Thierry Ottou Abe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ntieche, Z., Abe, M.T.O., freidy, O.M.G. et al. Electronic, non-linear optical, optoelectronic, and thermodynamic properties of undoped and doped bis (ethylenedithio) tetraselenafulvalene (BETS) (C10H8S4Se4) molecule: first study using ab initio investigation. J Mol Model 28, 256 (2022). https://doi.org/10.1007/s00894-022-05250-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05250-4

Keywords

Navigation