Skip to main content
Log in

Co(II), Ni(II), and Zn(II) complexes based on new hybrid imine-pyrazole ligands: structural, spectroscopic, and electronic properties

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The present work reports the theoretical investigation of Co(II), Ni(II), and Zn(II) complexes containing Schiff bases (used as ligands) derived from the reaction of 2-hydroxy-1-naphthaldehyde with N-(2-aminoethyl) pyrazoles. The spectral analyses were carried out using infrared, Raman, and UV-Vis spectroscopy. Vibrational analyses were performed in order to investigate the mechanisms involving metal-ligand and intra-ligand vibrations and indicated the possibility of charge transfer related to the transitions n\(\rightarrow \pi\)* and \(\pi \rightarrow \pi\)*. Structure optimizations and normal coordinate force field calculations were performed via the density functional theory (DFT) method at the HSE06/6-311G(d,p)/LanL2DZ level. A thorough analysis was also conducted regarding the nonlinear optical (NLO) properties and the natural bond orbital (NBO) of the complexes. The results show that these complexes have prospective application as materials for NLO. Furthermore, the NBO analysis confirms the coordination between the lone pair (LP) electrons of the donor atoms (O and N) and the metal acceptors. Finally, studies were conducted regarding the electronic properties of the complexes; among the properties investigated included the frontier molecular orbitals (FMO) and the molecular electrostatic potential (MEP), allowing to determine the energy gap and charge distribution.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Code availability

Not applicable.

References

  1. Elshaarawy RFM, Refaee AA, El-Sawi EA (2016) Pharmacological performance of novel poly-(ionic liquid)-grafted chitosan-n-salicylidene Schiff bases and their complexes. Carbohydr Polym 146:376–387. https://doi.org/10.1016/j.carbpol.2016.03.017

    Article  CAS  PubMed  Google Scholar 

  2. Abu-Dief AM, Mohamed IMA (2015) A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-suef Univ J Basic Appl Sci 4(2):119–133. https://doi.org/10.1016/j.bjbas.2015.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sakthivel A, Thalavaipandian A, Raman N, Thangagiri B (2017) Synthesis, characterization and antifungal activity of transition metal (II) complexes ofSchiff base derived from p-amino acetanilide and salicylaldehyde. Int J Curr Sci Res 3(5):1253–1260

    Google Scholar 

  4. Hassan MA, Omer AM, Abbas E, Baset WMA, Tamer TM (2018) Preparation, physicochemical characterization and antimicrobial activities of novel two phenolic chitosan Schiff base derivatives. Sci Rep 8(1):1–14. https://doi.org/10.1038/s41598-018-29650-w

    Article  CAS  Google Scholar 

  5. More MS, Joshi PG, Mishra YK, Khanna PK (2019) Metal complexes driven from Schiff bases and semicarbazones forbiomedical and allied applications: a review. Mater Today Chem 14:100195. https://doi.org/10.1016/j.mtchem.2019.100195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen Y, Li P, Su S, Chen M, He J, Liu L, He M, Wang H, Xue W (2019) Synthesis and antibacterial and antiviral activities of myricetin derivatives containing a 1, 2, 4-triazole Schiff base. RSC Adv 9(40):23045–23052. https://doi.org/10.1039/C9RA05139B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barbosa HFG, Attjioui M, Ferreira APG, Dockal ER, El Gueddari NE, Moerschbacher BM, Cavalheiro ÉTG (2017) Synthesis, characterization and biological activities of biopolymeric Schiff bases prepared with chitosan and salicylaldehydes and theirPd(II) and Pt(II) complexes. Molecules 22(11):1987. https://doi.org/10.3390/molecules22111987

    Article  CAS  PubMed Central  Google Scholar 

  8. de Araújo EL, Barbosa HFG, Dockal ER, Cavalheiro ÉTG (2017) Synthesis, characterization and biological activity of Cu(II), Ni(II) and Zn(II) complexes of biopolymeric Schiff bases of salicylaldehydes and chitosan. Int J Biol Macromol 95:168–176. https://doi.org/10.1016/j.ijbiomac.2016

    Article  PubMed  Google Scholar 

  9. de Fátima Â, de Paula Pereira C, Olímpio CRSDG, de Freitas Oliveira BG, Franco LL, da Silva PHC (2018) Schiff bases and their metal complexes as urease inhibitors–a brief review. J Adv Res 13:113–126. https://doi.org/10.1016/j.jare.2018.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Salehi M, Faghani F, Kubicki M, Bayat M (2018) New complexes of Ni(II) and Cu(II) with tridentate ONO Schiff base ligand: synthesis, crystal structures, electrochemical and theoretical investigation. J Iran Chem Soc 15(10):2229–2240. https://doi.org/10.1007/s13738-018-1412-1

    Article  CAS  Google Scholar 

  11. Li Z, Yan H, Chang G, Hong M, Dou J, Niu M (2016) Cu(II), Ni(II) complexes derived from chiral Schiff-base ligands: Synthesis, characterization, cytotoxicity, protein and DNA-binding properties. J Photochem Photobiol B Biol 163:403–412. https://doi.org/10.1016/j.jphotobiol.2016.09.005

    Article  CAS  Google Scholar 

  12. Adak P, Mondal A, Chattopadhyay SK (2020) Manganese (II) complex of an oxygen-nitrogen donor Schiff base ligand showing efficient catechol oxidase activity: synthesis, spectroscopic and kinetic study. New J Chem 44(9):3748–3754. https://doi.org/10.1039/C9NJ04591K

    Article  CAS  Google Scholar 

  13. Angeluşiu MV, Almăjan GL, Ilieş DC, Roşu T, Negoiu M (2008) Cu(II) complexes with nitrogen-oxygen donor ligands: synthesis and biological activity. Chem. Bull. “POLITEHNICA’’ Univ.(Timisoara) 53:78–82

    Google Scholar 

  14. Winpenny REP (2001) High-nuclearity paramagnetic 3d-metal complexes with oxygen-and nitrogen-donor ligands. Adv Inorg Chem 52:1–11. https://doi.org/10.1016/S0898-8838(05)52001-4

    Article  CAS  Google Scholar 

  15. Patel DD, Patel KR (2020) Ni(II) and Zn(II) Schiff base complexes: Synthesis, characterization and study of thermodynamic parameters and activation energy. Mater Today: Proc 32:392–396. https://doi.org/10.1016/j.matpr.2020.02.079

    Article  CAS  Google Scholar 

  16. Beyramabadi SA, Saadat-Far M, Faraji-Shovey A, Javan-Khoshkholgh M, Morsali A (2020) Synthesis, experimental and computational characterizations of a new quinoline derived Schiff base and its Mn(II), Ni(II) and Cu(II) complexes. J Mol Struct 1208:127898. https://doi.org/10.1016/j.molstruc.2020.127898

    Article  CAS  Google Scholar 

  17. Joshi R, Kumari A, Singh K, Mishra H, Pokharia S (2019) Synthesis, structural characterization, electronic structure calculation, molecular docking study and biological activity of triorganotin (IV) complexes of Schiff base (E)-4-amino-3-(2-(2-hydroxybenzylidene) hydrazinyl)-1H-1, 2, 4-triazole-5 (4H)-thione. J Mol Struct 1197:519–534. https://doi.org/10.1016/j.molstruc.2019.07.066

    Article  CAS  Google Scholar 

  18. Malekshah RE, Shakeri F, Khaleghian A, Salehi M (2020) Developing a biopolymeric chitosan supported Schiff-base and Cu(II), Ni(II) and Zn(II) complexes and biological evaluation as pro-drug. Int J Biol Macromol 152:846–861. https://doi.org/10.1016/j.ijbiomac.2020.02.245

    Article  CAS  PubMed  Google Scholar 

  19. Turkan F, Cetin A, Taslimi P, Karaman M, Gulçin I (2019) Synthesis, biological evaluation and molecular docking of novel pyrazole derivatives as potent carbonic anhydrase and acetylcholinesterase inhibitors. Bioorg Chem 86:420–427. https://doi.org/10.1016/j.bioorg.2019.02.013

    Article  CAS  PubMed  Google Scholar 

  20. Milovanović V, Petrović ZD, Novaković S, Bogdanović GA, Simijonović D, Petrović VP (2019) Structural characterization of benzoyl-1H-pyrazole derivatives obtained in lemon juice medium: Experimental and theoretical approach. J Mol Struct 1195:85–94. https://doi.org/10.1016/j.molstruc.2019.05.095

    Article  CAS  Google Scholar 

  21. Sadjadi S, Heravi MM, Daraie M (2017) A novel hybrid catalytic system based on immobilization of phosphomolybdic acid on ionic liquid decorated cyclodextrin-nanosponges: Efficient catalyst for the green synthesis of benzochromeno-pyrazole through cascade reaction: Triply green. J Mol Liquids 231:98–105. https://doi.org/10.1016/j.molliq.2017.01.072

    Article  CAS  Google Scholar 

  22. Mayoral MJ, Ovejero P, Criado R, Lagunas MC, Pintado-Alba A, Torres MR, Cano M (2011) Diphosphines and pyrazole/pyrazolate-type ligands as building blocks in luminescent Au(I) complexes. J Organometal Chem 696(15–16):2789–2796. https://doi.org/10.1016/j.jorganchem.2011.04.022

    Article  CAS  Google Scholar 

  23. Iskeleli NO, Alpaslan YB, Direkel Ş, Ertürk AG, Süleymanoğlu N, Ustabaş R (2015) The new Schiff base 4-[(4-Hydroxy-3-fluoro-5-methoxy-benzylidene) amino]-1, 5-dimethyl-2-phenyl-1, 2-dihydro-pyrazol-3-one: Experimental, DFT calculational studies and in vitro antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc 139:356–366. https://doi.org/10.1016/j.saa.2014.12.071

    Article  CAS  Google Scholar 

  24. Layek S, Agrahari B, Pathak DD et al (2017) Synthesis and characterization of a new Pd(II)-Schiff base complex [Pd(APD) 2]: An efficient and recyclable catalyst for Heck-Mizoroki and Suzuki-Miyaura reactions. J Organomet Chem 846:105–112. https://doi.org/10.1016/j.jorganchem.2017.05.049

    Article  CAS  Google Scholar 

  25. Gama S, Mendes F, Marques F, Santos IC, Carvalho MF, Correia I, Pessoa JC, Santos I, Paulo A (2011) Copper(II) complexes with tridentate pyrazole-based ligands: synthesis, characterization, DNA cleavage activity and cytotoxicity. J Inorg Biochem 105(5):637–644. https://doi.org/10.1016/j.jinorgbio.2011.01.013

    Article  CAS  PubMed  Google Scholar 

  26. Feng C, Guo J-J, Sun L-N, Zhao H (2018) Pyrazole Schiff bases cross-linked supramolecules: structural elucidation and antibacterial activity. J Iranian Che Soc 15(12):2871–2876. https://doi.org/10.1007/s13738-018-1473-1

    Article  CAS  Google Scholar 

  27. Moreno-Fuquen R, Cuenú F, Torres JE, De la Vega G, Galarza E, Abonia R, Kennedy AR (2017) Presence of π ...π and CH ...π interactions in the new Schiff base 2-{(E)-[(3-tert-butyl-1-phenyl-1H-pyrazol-5-yl) imino] methyl} phenol: experimental and DFT computational studies. J Mol Struct 150:366–373. https://doi.org/10.1016/j.molstruc.2017.08.093

    Article  CAS  Google Scholar 

  28. Moreira JM, Campos GF, Pinto LMC, Martins GR, Tirloni B, Schwalm CS, Carvalho CT (2022) Copper (II) complexes with novel schiff-based ligands: synthesis, crystal structure, thermal (TGA-DSC/FT-IR), spectroscopic (FT-IR, UV-Vis) and theoretical studies. J Therm Anal Calorim 147:4087–4098. https://doi.org/10.1007/s10973-021-10803-5

  29. Heyd J, Scuseria GE (2004) Efficient hybrid density functional calculations in solids: Assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. J Chem Phys 121(3):1187–1192. https://doi.org/10.1063/1.1760074

    Article  CAS  PubMed  Google Scholar 

  30. Yahiaoui S, Moliterni A, Corriero N, Cuocci C, Toubal K, Chouaih A, Djafri A, Hamzaoui F (2019) 2-thioxo-3n-(2-methoxyphenyl)- 5 [4’-methyl-3’ n-(2’-methoxyphenyl) thiazol-2’(3’ h)-ylidene] thiazolidin-4-one: Synthesis, characterization, X-ray single crystal structure investigation and quantum chemical calculations. J Mol Struct 1177:186–192. https://doi.org/10.1016/j.molstruc.2018.09.052

    Article  CAS  Google Scholar 

  31. Wadt WR, Hay PJ (1985) Ab initio effective core potentials formolecular calculations. potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–305. https://doi.org/10.1063/1.448800

    Article  Google Scholar 

  32. Alagawani S, Vasilyev V, Wang F (2021) Benchmarking the performance of DFT functionals for absorption and fluorescence spectra of EGFR inhibitor AG-1478 using TD-DFT. arXiv:2112.03441

  33. Sabzyan H, Keshavarz E, Noorisafa Z (2015) Evaluation of the B3LYP and HSE06 density functionals in the calculation of spectroscopic properties of the hcl\(^{2+}\) dication. J Iranian Chem Soc 12(4):581–586. https://doi.org/10.1007/s13738-014-0515-6

    Article  CAS  Google Scholar 

  34. Tamer Ö, Avcı D, Atalay Y (2017) A novel Cu(ii) complex of picolinate and 1, 10-phenanthroline: Preparation, crystal structure determination, spectroscopic characterization and nonlinear optical studies. J Inorg Organomet Polym Mater 27(3):700–713. https://doi.org/10.1007/s10904-017-0513-0

    Article  CAS  Google Scholar 

  35. Avcı D, Bahçeli S, Tamer Ö, Atalay Y (2015) Comparative study of DFT/B3LYP, B3PW91, and HSEH1PBE methods applied to molecular structures and spectroscopic and electronic properties of flufenpyr and amipizone. Canadian J Chem 93(10):1147–1156. https://doi.org/10.1139/cjc-2015-0176

    Article  CAS  Google Scholar 

  36. Linh TPT, Hieu NN, Phuc HV, Nguyen CQ, Vinh PT, Thai NQ, Hieu NV (2021) First-principles insights onto structural, electronic and optical properties of janus monolayers CrXO (X = S, Se, Te). RSC Advances 11(63):39672–39679. https://doi.org/10.1039/D1RA07876C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mathew T, Sujith CP, Mathew V (2021) Electronic and optical properties of Quasi-1D barium zinc chalcogenides Ba\(_{2}\)ZnX\(_3\) (X = S, Se, Te): A DFT approach. Solid State Sci 113:106456. https://doi.org/10.1016/j.solidstatesciences.2020.106456

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB (2016) Fox, DJ Gaussian16 Revision C.01. Gaussian Inc. Wallingford CT. https://gaussian.com

  39. Dennington R, Keith TA, Millam JM (2019) GaussView Version 6. Semichem Inc. Shawnee Mission KS. https://gaussian.com

  40. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–926. https://doi.org/10.1021/cr00088a005

    Article  CAS  Google Scholar 

  41. Jamróz MH (2013) Vibrational Energy Distribution Analysis (VEDA): Scopes and limitations. Spectrochim Acta A Mol Biomol Spectrosc 114:220–230. https://doi.org/10.1016/j.saa.2013.05.096

    Article  CAS  Google Scholar 

  42. Irving HMNH, Williams RJP (1953) 637 the stability of transition-metal complexes. J Chem Soc 3192–3210. https://doi.org/10.1039/JR9530003192

  43. Atkins P, Overton T (2010) Shriver and Atkins’ Inorganic Chemistry, 5th edn. Oxford University Press, New York

    Google Scholar 

  44. Tsuneda T, Song J-W, Suzuki S, Hirao K (2010) On Koopmans’ theorem in density functional theory. J Chem Phys 133(17):174101. https://doi.org/10.1063/1.3491272

    Article  CAS  PubMed  Google Scholar 

  45. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102(11):1995–2001. https://doi.org/10.1021/jp9716997

    Article  CAS  Google Scholar 

  46. Arroio A, Honório KM, da Silva ABF (2010) Quantum chemical properties used in structure-activity relationship studies. Química Nova 33(3):694–699. https://doi.org/10.1590/S0100-40422010000300037

    Article  CAS  Google Scholar 

  47. Thanikaivelan P, Subramanian V, Rao JR, Nair BU (2000) Application of quantum chemical descriptor in quantitative structure activity and structure property relationship. Chem Phys Lett 323(1–2):59–70. https://doi.org/10.1016/S0009-2614(00)00488-7

    Article  CAS  Google Scholar 

  48. Reed AE, Weinhold F (1983) Natural bond orbital analysis of near-Hartree-Fock water dimer. J Chem Phys 78(6):4066–4073. https://doi.org/10.1063/1.445134

    Article  CAS  Google Scholar 

  49. Carpenter JE (1987) Extension of Lewis structure concepts to open-shell and excited-state molecular species. PhD thesis, University of Wisconsin, Madison-WI. https://search.library.wisc.edu/catalog/999585226502121

  50. Carpenter JE, Weinhold F (1988) Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins’’ natural bond orbital procedure. J Mol Struct Theo Chem 169:41–62. https://doi.org/10.1016/0166-1280(88)80248-3

    Article  Google Scholar 

  51. Shoba D, Periandi S, Boomadevi S, Ramalingam S, Fereyduni E (2014) FT-IR, FT-Raman, UV, NMR spectra, molecular structure, ESP, NBO and HOMO-LUMO investigation of 2-methylpyridine 1-oxide: A combined experimental and DFT study. Spectrochim Acta A Mol Biomol Spectrosc 118:438–447. https://doi.org/10.1016/j.saa.2013.09.023

    Article  CAS  Google Scholar 

  52. Singh P, Islam SS, Ahmad H, Prabaharan A (2018) Spectroscopic investigation (FT-IR, FT-Raman), HOMO-LUMO, NBO, and molecular docking analysis of N-ethyl-N-nitrosourea, a potential anticancer agent. J Mol Struct 1154:39–50. https://doi.org/10.1016/j.molstruc.2017.10.012

    Article  CAS  Google Scholar 

  53. Savithiri S, Rajarajan G, Thanikachalam V et al (2016) Molecular structure, vibrational spectral assignments (FT-IR and FT-Raman), UV-Vis, NMR, NBO, HOMO-LUMO and NLO properties of 3t-pentyl-2r, 6c-diphenylpiperidin-4-one picrate based on DFT calculations. J Mol Struct 1105:225–237. https://doi.org/10.1016/j.molstruc.2015.10.063

    Article  CAS  Google Scholar 

  54. Prasad GK, Prashanth S, Srivastava S, Rao GN, Babu DR (2017) Synthesis, characterization, second and third order non-linear optical properties and luminescence properties of 1, 10-phenanthroline-2, 9-di (carboxaldehyde phenylhydrazone) and its transition metal complexes. Open Chem 15(1):283–292. https://doi.org/10.1515/chem-2017-0036

    Article  CAS  Google Scholar 

  55. Kanis DR, Ratner MA, Marks TJ (1994) Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chem Rev 94(1):195–242. https://doi.org/10.1021/cr00025a007

    Article  CAS  Google Scholar 

  56. Sajan D, Joe H, Jayakumar VS, Zaleski J (2006) Structural and electronic contributions to hyperpolarizability in methyl p-hydroxy benzoate. J Mol Struct 785(1–3):43–53. https://doi.org/10.1016/j.molstruc.2005.09.041

    Article  CAS  Google Scholar 

  57. Demircioğlu Z, Kaştaş ÇA, Büyükgüngör O (2015) The spectroscopic (FT-IR, UV-vis), Fukui function, NLO, NBO, NPA and tautomerism effect analysis of (E)-2-[(2-hydroxy-6-methoxybenzylidene) amino] benzonitrile. Spectrochim Acta A Mol Biomol Spectrosc 139:539–548. https://doi.org/10.1016/j.saa.2014.11.078

    Article  CAS  Google Scholar 

  58. Sylvestre S, Sebastian S, Edwin S, Amalanathan M, Ayyapan S, Jayavarthanan T, Oudayakumar K, Solomon S (2014) Vibrational spectra (FT-IR and FT-Raman), molecular structure, natural bond orbital, and TD-DFT analysis of L-Asparagine monohydrate by density functional theory approach. Spectrochim Acta A Mol Biomol Spectrosc 133:190–200. https://doi.org/10.1016/j.saa.2014.05.040

    Article  CAS  Google Scholar 

  59. Muthu S, Porchelvi EE (2013) FTIR, FT-RAMAN, NMR, spectra, normal co-ordinate analysis, NBO, NLO and DFT calculation of N, N-diethyl-4-methylpiperazine-1-carboxamide molecule. Spectrochim Acta A Mol Biomol Spectrosc115:275–286. https://doi.org/10.1016/j.saa.2013.06.011

    Article  CAS  Google Scholar 

  60. Avcı D, Altürk S, Sönmez F, Tamer Ö, Başoğlu A, Atalay Y, Kurt BZ, Dege N (2020) Novel metal complexes containing 6-methylpyridine-2-carboxylic acid as potent \({\alpha }\)-glucosidase inhibitor: synthesis, crystal structures, DFT calculations, and molecular docking. Mol Divers, 1–19. https://doi.org/10.1007/s11030-020-10037-x

  61. Bredas JL, Adant C, Tackx P, Persoons A, Pierce BM (1994) Third-order nonlinear optical response in organic materials: theoretical and experimental aspects. Chem Rev 94(1):243–278. https://doi.org/10.1021/cr00025a008

    Article  CAS  Google Scholar 

  62. Sebastian S, Sundaraganesan N, Karthikeiyan B, Srinivasan V (2011) Quantum mechanical study of the structure and spectroscopic (FT-IR, FT-Raman, 13C, 1H and UV), first order hyperpolarizabilities, NBO and TD-DFT analysis of the 4-methyl-2-cyanobiphenyl. Spectrochim Acta A Mol Biomol Spectrosc 78(2):590–600. https://doi.org/10.1016/j.saa.2010.11.028

    Article  CAS  Google Scholar 

  63. Altürk S, Avcı D, Başoğlu A, Tamer Ö, Atalay Y, Dege N (2018) Copper (II) complex with 6-methylpyridine-2-carboxyclic acid: experimental and computational study on the XRD, FT-IR and UV-Vis spectra, refractive index, band gap and NLO parameters. Spectrochim Acta A Mol Biomol Spectrosc 190:220–230. https://doi.org/10.1016/j.saa.2017.09.041

    Article  CAS  Google Scholar 

  64. Avcı D (2011) Second and third-order nonlinear optical properties and molecular parameters of azo chromophores: semiempirical analysis. Spectrochim Acta A Mol Biomol Spectrosc 82(1):37–43. https://doi.org/10.1016/j.saa.2011.06.037

    Article  CAS  PubMed  Google Scholar 

  65. Avcı D (2010) The consistency analysis of different semiempirical calculations on second-and third-order nonlinear optical properties of donor-acceptor chromophores containing a-cyan. Spectrochim Acta A Mol Biomol Spectrosc 77(3):665–672. https://doi.org/10.1016/j.saa.2010.07.007

    Article  CAS  PubMed  Google Scholar 

  66. El Kouari Y, Migalska-Zalas A, Arof AK, Sahraoui B (2015) Computations of absorption spectra and nonlinear optical properties of molecules based on anthocyanidin structure. Optic Quant Electron 47(5):1091–1099. https://doi.org/10.1007/s11082-014-9965-4

    Article  CAS  Google Scholar 

  67. Wu K, Snijders JG, Lin C (2002) Reinvestigation of hydrogen bond effects on the polarizability and hyperpolarizability of urea molecular clusters. J Phys Chem B 106(35):8954–8958. https://doi.org/10.1021/jp014181i

    Article  CAS  Google Scholar 

  68. Adant C, Dupuis M, Bredas JL (1995) Ab initio study of the nonlinear optical properties of urea: electron correlation and dispersion effects. Int J Quant Chem 56(S29):497–507. https://doi.org/10.1002/qua.560560853

    Article  Google Scholar 

  69. Ferrero M, Civalleri B, Rérat M, Orlando R, Dovesi R (2009) The calculation of the static first and second susceptibilities of crystalline urea: A comparison of Hartree-Fock and density functional theory results obtained with the periodic coupled perturbed Hartree-Fock/Kohn-Sham scheme. J Chem Phy 131(21):214704. https://doi.org/10.1063/1.3267861

    Article  CAS  Google Scholar 

  70. Abbas H, Shkir M, AlFaify S (2019) Density functional study of spectroscopy, electronic structure, linear and nonlinear optical properties of l-proline lithium chloride and l-proline lithium bromide monohydrate: For laser applications. Arab J Chem 12(8):2336–2346. https://doi.org/10.1016/j.arabjc.2015.02.011

    Article  CAS  Google Scholar 

  71. Altürk S, Avcı D, Tamer Ö, Atalay Y, Şahin O (2016) A cobalt (II) complex with 6-methylpicolinate: Synthesis, characterization, second-and third-order nonlinear optical properties, and DFT calculations. J Phys Chem Solids 98:71–80. https://doi.org/10.1016/j.jpcs.2016.06.008

    Article  CAS  Google Scholar 

  72. Nalwa HS, Miyata S (1996) Nonlinear optics of organic molecules and polymers, 1st edn. CRC Press, London. https://doi.org/10.1201/9780138745493

    Book  Google Scholar 

Download references

Funding

The authors would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq grant 434138/2018-5) for the financial grant provided in support of this research. The study was partly financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

Gabriel Rodrigues Martins: methodology, formal analysis and investigation, writing–original draft preparation; Cristiane Storck Schwalm: conceptualization, writing–review and editing; Cláudio Teodoro de Carvalho: conceptualization, formal analysis and investigation, writing–review and editing; Leandro Moreira de Campos Pinto: conceptualization, methodology, formal analysis and investigation, writing–original draft preparation, funding acquisition, supervision.

Corresponding author

Correspondence to Leandro Moreira de Campos Pinto.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 89 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, G.R., Schwalm, C.S., Carvalho, C.T.d. et al. Co(II), Ni(II), and Zn(II) complexes based on new hybrid imine-pyrazole ligands: structural, spectroscopic, and electronic properties. J Mol Model 28, 162 (2022). https://doi.org/10.1007/s00894-022-05109-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05109-8

Keywords

Navigation