Skip to main content
Log in

Investigation of the structural dynamics of a knotted protein and its unknotted analog using molecular dynamics

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The role of knots in proteins remains elusive. Some studies suggest an impact on stability; the difficulty in comparing systems to assess this effect, however, has been a significant challenge. In this study, we produced and analyzed molecular dynamic trajectories considering three different temperatures of two variants of ornithine transcarbamylase (OTC), only one of which has a 31 knot, in order to evaluate the relative stability of the two molecules. RMSD showed equilibrated structures for the produced trajectories, and RMSF showed subtle differences in flexibility. In the knot moiety, the knotted protein did not show a great deal of fluctuation at any temperature. For the unknotted protein, the residue GLY243 showed a high fluctuation in the corresponding moiety. The fraction of native contacts (Q) showed a similar profile at all temperatures, with the greatest decrease by 436 K. The investigation of conformational behavior with principal component analysis (PCA) and dynamic cross-correlation map (DCCM) showed that knotted protein is less likely to undergo changes in its conformation under the conditions employed compared to unknotted. PCA data showed that the unknotted protein had greater dispersion in its conformations, which suggests that it has a greater capacity for conformation transitions in response to thermal changes. DCCM graphs comparing the 310 K and 436 K temperatures showed that the knotted protein had less change in its correlation and anti-correlation movements, indicating stability compared to the unknotted.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Richardson JS (1977) β-Sheet topology and the relatedness of proteins. Nature 268:495–500. https://doi.org/10.1038/268495a0

    Article  CAS  PubMed  Google Scholar 

  2. Mansfield ML (1994) Are there knots in proteins? Nat Struct Biol 1:213–214. https://doi.org/10.1038/nsb0494-213

    Article  CAS  PubMed  Google Scholar 

  3. Sułkowska JI, Rawdon EJ, Millett KC et al (2012) Conservation of complex knotting and slipknotting patterns in proteins. Proc Natl Acad Sci 109:E1715–E1723. https://doi.org/10.1073/pnas.1205918109

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dabrowski-Tumanski P, Stasiak A, Sulkowska JI (2016) In search of functional advantages of knots in proteins. PLoS ONE 11:1–14. https://doi.org/10.1371/journal.pone.0165986

    Article  CAS  Google Scholar 

  5. Dabrowski-Tumanski P, Sulkowska JI (2017) Topological knots and links in proteins. Proc Natl Acad Sci 114:3415–3420. https://doi.org/10.1073/pnas.1615862114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu Y, Li S, Yan Z et al (2018) Stabilizing effect of inherent knots on proteins revealed by molecular dynamics simulations. Biophys J 115:1681–1689. https://doi.org/10.1016/j.bpj.2018.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Perlinska AP, Stasiulewicz A, Nawrocka EK et al (2020) Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites. PLoS Comput Biol 16:e1007904. https://doi.org/10.1371/journal.pcbi.1007904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao Y, Dabrowski-Tumanski P, Niewieczerzal S, Sulkowska JI (2018) The exclusive effects of chaperonin on the behavior of proteins with 52 knot. PLoS Comput Biol 14:e1005970. https://doi.org/10.1371/journal.pcbi.1005970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sułkowska JI, Noel JK, Onuchic JN (2012) Energy landscape of knotted protein folding. Proc Natl Acad Sci 109:17783–17788. https://doi.org/10.1073/pnas.1201804109

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wang L-W, Liu Y-N, Lyu P-C et al (2015) Comparative analysis of the folding dynamics and kinetics of an engineered knotted protein and its variants derived from HP0242 of Helicobacter pylori. J Phys Condens Matter 27:354106. https://doi.org/10.1088/0953-8984/27/35/354106

    Article  CAS  PubMed  Google Scholar 

  12. Flapan E, He A, Wong H (2019) Topological descriptions of protein folding. Proc Natl Acad Sci USA 116:9360–9369. https://doi.org/10.1073/pnas.1808312116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sulkowska JI (2020) On folding of entangled proteins: knots, lassos, links and θ-curves. Curr Opin Struct Biol 60:131–141. https://doi.org/10.1016/j.sbi.2020.01.007

    Article  CAS  PubMed  Google Scholar 

  14. Begun A, Liubimov S, Molochkov A, Niemi AJ (2021) On topology and knotty entanglement in protein folding. PLoS ONE 16:e0244547. https://doi.org/10.1371/journal.pone.0244547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barbensi A, Goundaroulis D (2021) f-distance of knotoids and protein structure. Proc R Soc A 477:20200898. https://doi.org/10.1098/rspa.2020.0898

    Article  Google Scholar 

  16. Sriramoju MK, Chen Y, Lee Y-TC, Hsu S-TD (2018) Topologically knotted deubiquitinases exhibit unprecedented mechanostability to withstand the proteolysis by an AAA+ protease. Sci Rep 8:1–9. https://doi.org/10.1038/s41598-018-25470-0

    Article  CAS  Google Scholar 

  17. San Martin Á, Rodriguez-Aliaga P, Molina JA et al (2017) Knots can impair protein degradation by ATP-dependent proteases. Proc Natl Acad Sci 114:9864–9869. https://doi.org/10.1073/pnas.1705916114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wojciechowski Michałand Gómez-Sicilia À, Carrión-Vázquez M, Cieplak M (2016) Unfolding knots by proteasome-like systems: simulations of the behaviour of folded and neurotoxic proteins. Mol Biosyst 12:2700–2712. https://doi.org/10.1039/C6MB00214E

    Article  CAS  PubMed  Google Scholar 

  19. Fonseka HYY, Javidi A, Oliveira LFL et al (2021) Unfolding and translocation of knotted proteins by Clp biological nanomachines: synergistic contribution of primary sequence and topology revealed by molecular dynamics simulations. J Phys Chem B 125:7335–7350. https://doi.org/10.1021/acs.jpcb.1c00898

    Article  CAS  PubMed  Google Scholar 

  20. Sivertsson EM, Jackson SE, Itzhaki LS (2019) The AAA+ protease ClpXP can easily degrade a 31 and a 52-knotted protein. Sci Rep 9:1–14. https://doi.org/10.1038/s41598-018-38173-3

    Article  Google Scholar 

  21. Sriramoju MK, Chen Y, Hsu S-TD (2020) Protein knots provide mechano-resilience to an AAA+ protease-mediated proteolysis with profound ATP energy expenses. Biochim Biophys Acta (BBA)-Proteins Proteomics 1868:140330. https://doi.org/10.1016/j.bbapap.2019.140330

    Article  CAS  Google Scholar 

  22. Lim NCH, Jackson SE (2015) Molecular knots in biology and chemistry. J Phys Condens Matter 27:354101. https://doi.org/10.1088/0953-8984/27/35/354101

    Article  CAS  PubMed  Google Scholar 

  23. Virnau P, Mallam A, Jackson S (2010) Structures and folding pathways of topologically knotted proteins. J Phys Condens Matter 23:33101. https://doi.org/10.1088/0953-8984/23/3/033101

    Article  CAS  Google Scholar 

  24. Faisca PFN (2015) Knotted proteins: a tangled tale of structural biology. Comput Struct Biotechnol J 13:459–468. https://doi.org/10.1016/j.csbj.2015.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Potestio R, Micheletti C, Orland H (2010) Knotted vs. unknotted proteins: evidence of knot-promoting loops. PLoS Comput Biol 6:e1000864. https://doi.org/10.1371/journal.pcbi.1000864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Forgan RS, Sauvage J-P, Stoddart JF (2011) Chemical topology: complex molecular knots, links, and entanglements. Chem Rev 111:5434–5464. https://doi.org/10.1021/cr200034u

    Article  CAS  PubMed  Google Scholar 

  27. Jackson SE, Suma A, Micheletti C (2017) How to fold intricately: using theory and experiments to unravel the properties of knotted proteins. Curr Opin Struct Biol 42:6–14. https://doi.org/10.1016/j.sbi.2016.10.002

    Article  CAS  PubMed  Google Scholar 

  28. Dabrowski-Tumanski P, Rubach P, Goundaroulis D et al (2019) KnotProt 2.0: a database of proteins with knots and other entangled structures. Nucleic Acids Res 47:D367–D375. https://doi.org/10.1093/nar/gky1140

    Article  CAS  PubMed  Google Scholar 

  29. Beccara SA, Škrbić T, Covino R et al (2013) Folding pathways of a knotted protein with a realistic atomistic force field. PLoS Comput Biol 9:e1003002. https://doi.org/10.1371/journal.pcbi.1003002

    Article  CAS  Google Scholar 

  30. Sułkowska JI, Sułkowski P, Onuchic J (2009) Dodging the crisis of folding proteins with knots. Proc Natl Acad Sci 106:3119–3124. https://doi.org/10.1073/pnas.0811147106

    Article  PubMed  PubMed Central  Google Scholar 

  31. Noel JK, Onuchic JN, Sulkowska JI (2013) Knotting a protein in explicit solvent. J Phys Chem Lett 4:3570–3573. https://doi.org/10.1021/jz401842f

    Article  CAS  Google Scholar 

  32. Perlinska AP, Kalek M, Christian T et al (2020) Mg2+-dependent methyl transfer by a knotted protein: a molecular dynamics simulation and quantum mechanics study. ACS Catal 10:8058–8068. https://doi.org/10.1021/acscatal.0c00059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bölinger D, Sułkowska JI, Hsu H-P et al (2010) A Stevedore’s protein knot. PLoS Comput Biol 6:e1000731. https://doi.org/10.1371/journal.pcbi.1000731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu X, Xu P, Wang J, et al (2015) Folding mechanisms of trefoil knot proteins studied by molecular dynamics simulations and Go-model. In: Advance in Structural Bioinformatics. Springer, pp 93–110. https://doi.org/10.1007/978-94-017-9245-5_8

  35. Sriramoju MK, Yang T-J, Hsu S-TD (2018) Comparative folding analyses of unknotted versus trefoil-knotted ornithine transcarbamylases suggest stabilizing effects of protein knots. Biochem Biophys Res Commun 503:822–829. https://doi.org/10.1016/j.bbrc.2018.06.082

    Article  CAS  PubMed  Google Scholar 

  36. Dabrowski-Tumanski P, Stasiak A, Sulkowska JI (2016) In search of functional advantages of knots in proteins. PLoS ONE 11:e0165986. https://doi.org/10.1371/journal.pone.0165986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. https://doi.org/10.1002/jcc.20289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Case DA, Ben-Shalom IY, Brozell SR et al (2018) AMBER 2018; 2018. University of California, San Francisco

    Google Scholar 

  39. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 32:W665–W667. https://doi.org/10.1093/nar/gkh381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maier JA, Martinez C, Kasavajhala K et al (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713. https://doi.org/10.1021/acs.jctc.5b00255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341. https://doi.org/10.1016/0021-9991(77)90098-5

    Article  CAS  Google Scholar 

  42. Feller SE, Zhang Y, Pastor RW, Brooks BR (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103:4613–4621. https://doi.org/10.1063/1.470648

    Article  CAS  Google Scholar 

  43. Grant BJ, Rodrigues APC, ElSawy KM et al (2006) Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics 22:2695–2696. https://doi.org/10.1093/bioinformatics/btl461

    Article  CAS  PubMed  Google Scholar 

  44. Zhou L, Ma Y-C, Tang X et al (2021) Identification of the potential dual inhibitor of protein tyrosine phosphatase sigma and leukocyte common antigen-related phosphatase by virtual screen, molecular dynamic simulations and post-analysis. J Biomol Struct Dyn 39:45–62. https://doi.org/10.1080/07391102.2019.1705913

    Article  CAS  PubMed  Google Scholar 

  45. Wei-Ya L, Yu-Qing D, Yang-Chun M et al (2019) Exploring the cause of the inhibitor 4AX attaching to binding site disrupting protein tyrosine phosphatase 4A1 trimerization by molecular dynamic simulation. J Biomol Struct Dyn 37:4840–4851. https://doi.org/10.1080/07391102.2019.1567392

    Article  CAS  PubMed  Google Scholar 

  46. Xu Y, Li S, Yan Z et al (2019) Revealing cooperation between knotted conformation and dimerization in protein stabilization by molecular dynamics simulations. J Phys Chem Lett 10:5815–5822. https://doi.org/10.1021/acs.jpclett.9b02209

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the physical structure and computational support provided by Universidade Federal da Paraíba (UFPB), the computer resources of Centro Nacional de Processamento de Alto Desempenho em São Paulo (CENAPAD-SP). The English text of this paper has been revised by Sidney Pratt, Canadian, MAT (The Johns Hopkins University), RSAdip—TESL (Cambridge University).

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES) through the research project Bioinformática Estrutural de Proteínas: Modelos, Algoritmos e Aplicações Biotecnológicas (Edital Biologia Computacional 51/2013, processo AUXPE1375/2014 da CAPES). G.B.R. received support from the Brazilian National Council for Scientific and Technological Development (CNPq grant no. 309761/2017–4).

Author information

Authors and Affiliations

Authors

Contributions

José Cícero Alves Silva: wrote the original manuscript, performed research, curation, and data analysis. Elton José Ferreira Chaves: wrote the original manuscript, curation and data analysis. Gabriel Aires Urquiza de Carvalho: coordinator and revised the original manuscript. Gerd Bruno Rocha: coordinator, planned the research, fundraising, revised the original manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Gerd Bruno Rocha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2010 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, J.C.A., Chaves, E.J.F., de Carvalho, G.A.U. et al. Investigation of the structural dynamics of a knotted protein and its unknotted analog using molecular dynamics. J Mol Model 28, 108 (2022). https://doi.org/10.1007/s00894-022-05094-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05094-y

Keywords

Navigation