Skip to main content
Log in

Ab initio study of hydrated cesium iodide dimer (CsI)2−/0(H2O)0–6 and the cation size effect on (MI)2−/0(H2O)0–6 (M = Li, Na, K, Cs)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structures of microsolvated (CsI)2−/0(H2O)0–6 clusters were determined using ab initio calculations. Our studies show that one Cs atom at the apex was firstly separated from the pyramid-shaped (CsI)2 unit when the water number reaches 3, whereas CsI distances did not increase significantly from n = 0 to 6 for neutrals. Additionally, the atomic charge and reduced density gradient analyses were carried out; the results reveal that the extra electrons are almost entirely localized on terminal Cs atom and the Cs+-water interactions dominate in (CsI)2(H2O)0–6. The water-water interactions show up at n = 5. The comparison of (CsI)2−/0(H2O)n with (MI)2−/0(H2O)n (M = Li, Na, K) shows that neutral (CsI)2 is the most difficult to be separated, which matches the law of matching water affinity. As for anions, the most difficult separation occurs in the case of small size (LiI)2 due to the effect of extra electrons, and (MI)2 with larger size cation is more likely to interact with water to form a pyramid structure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and in the Supplementary Material.

References

  1. Schmidtchen FP, Berger M (1997) Artificial organic host molecules for anions. Chem Rev 97(5):1609–1646. https://doi.org/10.1021/cr9603845

    Article  CAS  PubMed  Google Scholar 

  2. Chellappan K, Singh NJ, Hwang I-C, Lee JW, Kim KS (2005) A Calix[4]imidazolium[2]pyridine as an anion receptor. Angew Chem Int Ed 44(19):2899–2903. https://doi.org/10.1002/ange.200500119

    Article  CAS  Google Scholar 

  3. Mahadevi AS, Sastry GN (2016) Cooperativity in noncovalent interactions. Chem Rev 116(5):2775–2825. https://doi.org/10.1021/cr500344e

    Article  CAS  PubMed  Google Scholar 

  4. Jungwirth P, Tobias DJ (2006) Specific ion effects at the air/water interface. Chem Rev 106(4):1259–1281. https://doi.org/10.1021/cr0403741

    Article  CAS  PubMed  Google Scholar 

  5. Collins KD, Neilson GW, Enderby JE (2007) Ions in water: characterizing the forces that control chemical processes and biological structure. Biophys Chem 128(2):95–104. https://doi.org/10.1016/j.bpc.2007.03.009

    Article  CAS  PubMed  Google Scholar 

  6. Perera L, Berkowitz ML (1993) Stabilization energies of Cl, Br, and I ions in water clusters. J Chem Phys 99(5):4222–4224. https://doi.org/10.1063/1.466096

    Article  CAS  Google Scholar 

  7. Kim J, Lee HM, Suh SB, Majumdar D, Kim KS (2000) Comparative ab initio study of the structures, energetics and spectra of X⋅(H2O)n=1–4 [X=F, Cl, Br, I] clusters. J Chem Phys 113(13):5259–5272. https://doi.org/10.1063/1.1290016

    Article  CAS  Google Scholar 

  8. Zeng Z, Liu C-W, Hou G-L, Feng G, Xu H-G, Gao YQ, Zheng W-J (2015) Photoelectron Spectroscopy and ab initio Calculations of Li(H2O)n and Cs(H2O)n (n = 1–6) Clusters. J Phys Chem A 119(12):2845–2856. https://doi.org/10.1021/jp512177j

    Article  CAS  PubMed  Google Scholar 

  9. Zhang H, Liu Z-F (2011) The identification of a solvated electron pair in the gaseous clusters of Na−(H2O)n and Li−(H2O)n. J Chem Phys 135(6):064309. https://doi.org/10.1063/1.3622562

    Article  CAS  PubMed  Google Scholar 

  10. Collins KD (2012) Why continuum electrostatics theories cannot explain biological structure, polyelectrolytes or ionic strength effects in ion–protein interactions. Biophys Chem 167:43–59. https://doi.org/10.1016/j.bpc.2012.04.002

    Article  CAS  PubMed  Google Scholar 

  11. Miller DJ, Lisy JM (2006) Hydration of ion-biomolecule complexes: ab initio calculations and gas-phase vibrational spectroscopy of K+(indole)m(H2O)n. J Chem Phys 124(18):184301. https://doi.org/10.1063/1.2191047

    Article  CAS  PubMed  Google Scholar 

  12. Kaleta DT, Jarrold MF (2002) Noncovalent interactions between unsolvated peptides. J Phys Chem A 106(42):9655–9664. https://doi.org/10.1021/jp020227b

    Article  CAS  Google Scholar 

  13. Chen D, Wei Z, Liu B (2015) An insight into hydration structure of sodium glycinate from ab initio quantum chemical study. J Mol Model 21(9):234. https://doi.org/10.1007/s00894-015-2781-3

    Article  CAS  PubMed  Google Scholar 

  14. Albertí M, Lago NF (2013) Competitive solvation of K+ by C6H6 and H2O in the K+-(C6H6)n-(H2O)m (n = 1–4; m = 1–6) aggregates. Eur Phys J D 67(4):73. https://doi.org/10.1140/epjd/e2013-30753-x

    Article  CAS  Google Scholar 

  15. Cabarcos OM, Weinheimer CJ, Lisy JM (1999) Size selectivity by cation–π interactions: solvation of K+ and Na+ by benzene and water. J Chem Phys 110(17):8429–8435. https://doi.org/10.1063/1.478752

    Article  CAS  Google Scholar 

  16. Hashimoto K, Kamimoto T, Fuke K (1997) Ab initio MO study of solvated negative alkali atom clusters: [M(H2O)n] and [M(NH3)n] (M= Na and Li, n = 1–3). Chem Phys Lett 266(1):7–15. https://doi.org/10.1016/S0009-2614(96)01502-3

    Article  CAS  Google Scholar 

  17. Asada T, Nishimoto K (1995) Monte Carlo simulations of M+Cl (H2O)n (M = Li, Na) clusters and the dissolving mechanism of ion pairs in water. Chem Phys Lett 232(5–6):518–523. https://doi.org/10.1080/08927029608024082

    Article  CAS  Google Scholar 

  18. Woon DE, Dunning TH, Jr (1995) The pronounced effect of microsolvation on diatomic alkali halides: ab initio modeling of MX(H2O)n (M = Li, Na; X = F, Cl; n = 1–3). J Am Chem Soc 117(3):1090–1097. https://doi.org/10.1021/ja00108a027

    Article  CAS  Google Scholar 

  19. Godinho S, do Couto PC, Cabral BC (2004) Charge separation and charge transfer to solvent in NaCl–water clusters. Chem Phys Lett 399(1):200–205. https://doi.org/10.1016/j.cplett.2004.10.016

    Article  CAS  Google Scholar 

  20. Klimeš J, Bowler DR, Michaelides A (2013) Understanding the role of ions and water molecules in the NaCl dissolution process. J Chem Phys 139(23):234702. https://doi.org/10.1063/1.4840675

    Article  CAS  PubMed  Google Scholar 

  21. Ault BS (1978) Infrared spectra of argon matrix-isolated alkali halide salt/water complexes. J Am Chem Soc 100(8):2426–2433. https://doi.org/10.1002/chin.197830005

    Article  CAS  Google Scholar 

  22. Mizoguchi A, Ohshima Y, Endo Y (2011) The study for the incipient solvation process of NaCl in water: the observation of the NaCl-(H2O)n (n = 1, 2, and 3) complexes using Fourier-transform microwave spectroscopy. J Chem Phys 135(6):064307. https://doi.org/10.1063/1.3616047

    Article  CAS  PubMed  Google Scholar 

  23. Mizoguchi A, Ohshima Y, Endo Y (2003) Microscopic Hydration of the Sodium Chloride Ion Pair. J Am Chem Soc 125(7):1716–1717. https://doi.org/10.1021/ja028522x

    Article  CAS  PubMed  Google Scholar 

  24. Liu D, Ma G, Levering LM, Allen HC (2004) Vibrational spectroscopy of aqueous sodium halide solutions and air-liquid interfaces: observation of increased interfacial depth. J Phys Chem B 108(7):2252–2260. https://doi.org/10.1021/jp036169r

    Article  CAS  Google Scholar 

  25. Ghosal S, Hemminger JC, Bluhm H, Mun BS, Hebenstreit EL, Ketteler G, Ogletree DF, Requejo FG, Salmeron M (2005) Electron spectroscopy of aqueous solution interfaces reveals surface enhancement of halides. Science 307(5709):563–566. https://doi.org/10.1126/science.1106525

    Article  CAS  PubMed  Google Scholar 

  26. Li R-Z, Liu C-W, Gao YQ, Jiang H, Xu H-G, Zheng W-J (2013) Microsolvation of LiI and CsI in water: anion photoelectron spectroscopy and ab initio calculations. J Am Chem Soc 135:5190–5199. https://doi.org/10.1021/ja4006942

    Article  CAS  PubMed  Google Scholar 

  27. Collins KD (2004) Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods 34(3):300–311. https://doi.org/10.1016/j.ymeth.2004.03.021

    Article  CAS  PubMed  Google Scholar 

  28. Woon DE (1994) Ab initio modeling of (LiF)2 and (LiF)2(H2O). J Phys Chem 98(36):8831–8833. https://doi.org/10.1021/j100087a003

    Article  CAS  Google Scholar 

  29. Liu C-W, Hou G-L, Zheng W-J, Gao YQ (2014) Adsorption of water molecules on sodium chloride trimer. Theor Chem Acc 133(10):1–10. https://doi.org/10.1007/s00214-014-1550-1

    Article  CAS  Google Scholar 

  30. Fatemi DJ, Bloomfield LA (2002) Photoelectron spectroscopy of sodium iodide clusters containing single hydroxyl ions or water molecules. Phys Rev A 66(1):013202. https://doi.org/10.1103/PhysRevA.66.013202

    Article  CAS  Google Scholar 

  31. Blades AT, Peschke M, Verkerk UH, Kebarle P (2004) Hydration energies in the gas phase of select (MX)mM+ ions, where M+ = Na+, K+, Rb+, Cs+, NH4+ and X- = F-, Cl-, Br-, I-, NO2-, NO3-. Observed magic numbers of (MX)mM+ ions and their possible significance. J Am Chem Soc 126(38):11995–12003. https://doi.org/10.1021/jă63r

    Article  CAS  PubMed  Google Scholar 

  32. Li R-Z, Liu Y-Y, Yang M (2017) Microsolvation of lithium iodide dimer studied by ab initio calculations. Comput Theor Chem 1115:119–126. https://doi.org/10.1016/j.comptc.2017.06.005

    Article  CAS  Google Scholar 

  33. Li R-Z, Hou G-L, Liu C-W, Xu H-G, Zhao X, Gao YQ, Zheng W-J (2016) Initial hydration behavior of sodium iodide dimer: photoelectron spectroscopy and ab initio calculations. Phys Chem Chem Phys 18(1):557–565. https://doi.org/10.1039/c5cp05550d

    Article  CAS  PubMed  Google Scholar 

  34. Li R-Z, Zeng Z, Hou G-L, Xu H-G, Zhao X, Gao YQ, Zheng W-J (2016) Hydration of potassium iodide dimer studied by photoelectron spectroscopy and ab initio calculations. J Chem Phys 145(18):184307. https://doi.org/10.1063/1.4967168

    Article  CAS  PubMed  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al (2009) Gaussian 09, revision D.01. Gaussian, Inc, Wallingford CT

  36. Vydrov OA, Scuseria GE (2006) Assessment of a long-range corrected hybrid functional. J Chem Phys 125(23):234109. https://doi.org/10.1063/1.2409292

    Article  CAS  PubMed  Google Scholar 

  37. Vydrov OA, Heyd J, Krukau AV, Scuseria GE (2006) Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals. J Chem Phys 125(7):074106. https://doi.org/10.1063/1.2244560

    Article  CAS  PubMed  Google Scholar 

  38. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82(1):284–298. https://doi.org/10.1063/1.448800

    Article  CAS  Google Scholar 

  39. Leininger T, Nicklass A, Küchle W, Stoll H, Dolg M, Bergner A (1996) The accuracy of the pseudopotential approximation: non-frozen-core effects for spectroscopic constants of alkali fluorides XF (X = K, Rb, Cs). Chem Phys Lett 255(4–6):274–280. https://doi.org/10.1016/0009-2614(96)00382-X

    Article  CAS  Google Scholar 

  40. Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) Basis set exchange: a community database for computational sciences. J Chem Inf Model 47(3):1045–1052. https://doi.org/10.1021/ci600510j

    Article  CAS  PubMed  Google Scholar 

  41. Pople JA, Head-Gordon M, Raghavachari K (1987) Quadratic configuration interaction. A general technique for determining electron correlation energies. J Chem Phys 87(10):5968–5975. https://doi.org/10.1063/1.453520

    Article  CAS  Google Scholar 

  42. Frisch MJ, Head-Gordon M, Pople JA (1990) A direct MP2 gradient method. Chem Phys Lett 166(3):275–280. https://doi.org/10.1016/0009-2614(90)80029-D

    Article  CAS  Google Scholar 

  43. Frisch MJ, Head-Gordon M, Pople JA (1990) Semi-direct algorithms for the MP2 energy and gradient. Chem Phys Lett 166(3):281–289. https://doi.org/10.1016/0009-2614(90)80030-H

    Article  CAS  Google Scholar 

  44. Purvis GD, Bartlett RJ (1982) A full coupled-cluster singles and doubles model: the inclusion of disconnected triples. J Chem Phys 76(4):1910–1918. https://doi.org/10.1063/1.443164

    Article  CAS  Google Scholar 

  45. Akola J, Manninen M, Häkkinen H, Landman U, Li X, Wang L-S (2000) Aluminum cluster anions: photoelectron spectroscopy and ab initio simulations. Phys Rev B 62(19):13216–13228. https://doi.org/10.1103/PHYSREVB.62.13216

    Article  CAS  Google Scholar 

  46. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  Google Scholar 

  47. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132(18):6498–6506. https://doi.org/10.1021/ja100936w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14(1):33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Part of the theoretical calculations were conducted on the ScGrid and DeepComp 7000 of the Supercomputing Center, Computer Network Information Center of Chinese Academy of Sciences.

Funding

This work was supported by the National Science Foundation of Shaanxi, China (grant no. 2019JM-292).

Author information

Authors and Affiliations

Authors

Contributions

Renzhong Li wrote the first draft of the paper. All authors revised and approved the final version of the manuscript.

Corresponding author

Correspondence to Ren-Zhong Li.

Ethics declarations

Ethics approval

The manuscript is prepared in compliance with the Ethics in Publishing Policy as described in the Guide for Authors.

Consent to participate

The manuscript is approved by all authors for publication.

Consent for publication

The consent for publication was obtained from all participants

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 4006 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Li, RZ., Xu, XY. et al. Ab initio study of hydrated cesium iodide dimer (CsI)2−/0(H2O)0–6 and the cation size effect on (MI)2−/0(H2O)0–6 (M = Li, Na, K, Cs). J Mol Model 28, 95 (2022). https://doi.org/10.1007/s00894-022-05091-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05091-1

Keywords

Navigation