Skip to main content
Log in

Simulations suggest double sodium binding induces unexpected conformational changes in thrombin

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Thrombin is a Na\(^+\)-activated serine protease existing in two forms targeted to procoagulant and anticoagulant activities, respectively. There is one Na\(^+\)-binding site that has been the focus of the study of the thrombin. However, molecular dynamics (MD) simulations suggest that there might be actually two Na\(^+\)-binding sites in thrombin and that Na\(^+\) ions can even bind to two sites simultaneously. In this study, we performed 12 independent 2-µs all-atom MD simulations for the wild-type (WT) thrombin and we studied the effects of the different Na\(^+\) binding modes on thrombin. From the root-mean-square fluctuations (RMSF) for the \(\alpha\)-carbons, we see that the atomic fluctuations mainly change in the 60s, 170s, and 220s loops, and the connection (residue 167 to 170). The correlation matrices for different binding modes suggest regions that may play an important role in thrombin’s allosteric response and provide us a possible allosteric pathway for the sodium binding. Amorim-Hennig (AH) clustering tells us how the structure of the regions of interest changes on sodium binding. Principal component analysis (PCA) shows us how the different regions of thrombin change conformation together with sodium binding. Solvent-accessible surface area (SASA) exposes the conformational change in exosite I and catalytic triad. Finally, we argue that the double binding mode might be an inactive mode and that the kinetic scheme for the Na\(^+\) binding to thrombin might be a multiple-step mechanism rather than a 2-step mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data available by request.

Code availability

Code available by request.

References

  1. Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscip Rev Comput Stat 2(4), 433–459

    Article  Google Scholar 

  2. Bah A, Garvey LC, Ge J, Di Cera E (2006) Rapid kinetics of na+ binding to thrombin. Journal of Biological Chemistry 281(52), 40049–40056

    Article  CAS  Google Scholar 

  3. Bah A, Chen Z, Bush-Pelc LA, Mathews FS, Di Cera E (2007) Crystal structures of murine thrombin in complex with the extracellular fragments of murine protease-activated receptors par3 and par4. Proceedings of the National Academy of Sciences 104(28), 11603–11608

    Article  CAS  Google Scholar 

  4. Berendsen HJ, Postma Jv, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8), 3684–3690

    Article  CAS  Google Scholar 

  5. Bode W, Turk D, Karshikov A (1992) The refined 1.9-å x-ray crystal structure of d-phe-pro-arg chloromethylketone-inhibited human \(\alpha\)-thrombin: Structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships. Protein science 1(4):426–471

  6. Bro R, Smilde AK (2014) Principal component analysis. Analytical methods 6(9):2812–2831

    CAS  Google Scholar 

  7. Carrell CJ, Bush LA, Mathews FS, Di Cera E (2006) High resolution crystal structures of free thrombin in the presence of k+ reveal the molecular basis of monovalent cation selectivity and an inactive slow form. Biophysical chemistry 121(3):177–184

    Article  CAS  PubMed  Google Scholar 

  8. Carter WJ, Myles T, Gibbs CS, Leung LL, Huntington JA (2004) Crystal structure of anticoagulant thrombin variant e217k provides insights into thrombin allostery. Journal of Biological Chemistry 279(25), 26387–26394

    Article  CAS  Google Scholar 

  9. Darden T, York D, Pedersen L (1993) Particle mesh ewald: An N Log (n) method for ewald sums in large systems. J Chem Phys 98(12), 10089–10092

    Article  CAS  Google Scholar 

  10. Davie EW, Kulman JD (2006) An overview of the structure and function of thrombin. In: Seminars in thrombosis and hemostasis, Copyright 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New ..., vol 32, pp 003–015

  11. De Amorim RC, Hennig C (2015) Recovering the number of clusters in data sets with noise features using feature rescaling factors. Inf Sci (N Y) 324:126–145

    Article  Google Scholar 

  12. Di Cera E (2008) Thrombin. Mol Aspects Med 29(4), 203–254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Di Cera E, Guinto ER, Vindigni A, Dang QD, Ayala YM, Wuyi M, Tulinsky A (1995) The na+ binding site of thrombin. Journal of Biological Chemistry 270(38), 22089–22092

    Article  Google Scholar 

  14. Feenstra KA, Hess B, Berendsen HJ (1999) Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. J Comput Chem 20(8), 786–798

    Article  CAS  Google Scholar 

  15. Fuglestad BA (2013) Exploring the Dynamics of Thrombin by NMR. University of California, San Diego

    Google Scholar 

  16. Gandhi PS, Chen Z, Di Cera E (2010) Crystal structure of thrombin bound to the uncleaved extracellular fragment of par1. Journal of Biological Chemistry 285(20), 15393–15398

    Article  CAS  Google Scholar 

  17. Godwin R, Gmeiner W, Salsbury Jr FR (2016) Importance of long-time simulations for rare event sampling in zinc finger proteins. J Biomol Struct Dyn 34(1), 125–134

    Article  CAS  PubMed  Google Scholar 

  18. Godwin RC, Melvin R, Salsbury FR (2015) Molecular dynamics simulations and computer-aided drug discovery. In: Computer-aided drug discovery, Springer, pp 1–30

  19. Godwin RC, Melvin RL, Gmeiner WH, Salsbury Jr FR (2017) Binding site configurations probe the structure and dynamics of the zinc finger of nemo (nf-kb essential modulator). Biochemistry 56(4), 623–633

    Article  CAS  PubMed  Google Scholar 

  20. Handley LD, Treuheit NA, Venkatesh VJ, Komives EA (2015) Thrombomodulin binding selects the catalytically active form of thrombin. Biochemistry 54(43), 6650–6658

    Article  CAS  PubMed  Google Scholar 

  21. Handley LD, Fuglestad B, Stearns K, Tonelli M, Fenwick RB, Markwick PR, Komives EA (2017) Nmr reveals a dynamic allosteric pathway in thrombin. Scientific reports 7(1):1–9

    Article  CAS  Google Scholar 

  22. Harvey M, De Fabritiis G (2009) An implementation of the smooth particle mesh ewald method on gpu hardware. J Chem Theory Comput 5(9), 2371–2377

    Article  CAS  PubMed  Google Scholar 

  23. Harvey MJ, Giupponi G, Fabritiis GD (2009) Acemd: Accelerating biomolecular dynamics in the microsecond time scale. J Chem Theory Comput 5(6), 1632–1639

    Article  CAS  PubMed  Google Scholar 

  24. Humphrey W, Dalke A, Schulten K (1996) Vmd: Visual molecular dynamics. J Mol Graphics 14(1), 33–38

    Article  CAS  Google Scholar 

  25. Huntington JA, Esmon CT (2003) The molecular basis of thrombin allostery revealed by a 1.8 å structure of the “slow” form. Structure 11(4):469–479

  26. Ichiye T, Karplus M (1991) Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins: Structure, Function, and Bioinformatics 11(3):205–217

  27. Johnson DJ, Adams TE, Li W, Huntington JA (2005) Crystal structure of wild-type human thrombin in the na+-free state. Biochemical Journal 392(1), 21–28

    Article  CAS  PubMed Central  Google Scholar 

  28. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2), 926–935

    Article  CAS  Google Scholar 

  29. Kurisaki I, Takayanagi M, Nagaoka M (2015) Toward understanding allosteric activation of thrombin: A conjecture for important roles of unbound na+ molecules around thrombin. The Journal of Physical Chemistry B 119(9), 3635–3642

    Article  CAS  PubMed  Google Scholar 

  30. Lai MT, Di Cera E, Shafer JA (1997) Kinetic pathway for the slow to fast transition of thrombin: Evidence of linked ligand binding at structurally distinct domains. Journal of Biological Chemistry 272(48), 30275–30282

    Article  CAS  Google Scholar 

  31. Lemons DS, Gythiel A (1997) Paul langevin’s 1908 paper “on the theory of brownian motion”[“sur la théorie du mouvement brownien,” cr acad. sci.(paris) 146, 530–533 (1908)]. Am J Phys 65(11):1079–1081

  32. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18), 3586–3616

  33. Mackerell Jr AD, Feig M, Brooks III CL (2004) Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25(11), 1400–1415

    Article  CAS  PubMed  Google Scholar 

  34. Maragoudakis ME, Tsopanoglou NE (2010) Thrombin: physiology and disease, vol 19. Springer Science & Business Media

  35. Melvin R, Salsbury F (2016) Hdbscan and amorim-hennig for md. Figshare 10:m9

    Google Scholar 

  36. Melvin RL, Salsbury Jr FR (2016) Visualizing ensembles in structural biology. J Mol Graphics Modell 67:44–53

    Article  CAS  Google Scholar 

  37. Melvin RL, Godwin RC, Xiao J, Thompson WG, Berenhaut KS, Salsbury Jr FR (2016) Uncovering large-scale conformational change in molecular dynamics without prior knowledge. J Chem Theory Comput 12(12), 6130–6146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Melvin RL, Thompson WG, Godwin RC, Gmeiner WH, Salsbury Jr FR (2017) Muts\(\alpha\)’s multi-domain allosteric response to three dna damage types revealed by machine learning. Front Phys(Lausanne) 5:10

  39. Nayal M, Di Cera E (1996) Valence screening of water in protein crystals reveals potential na+ binding sites

  40. Papaconstantinou ME, Carrell CJ, Pineda AO, Bobofchak KM, Mathews FS, Flordellis CS, Maragoudakis ME, Tsopanoglou NE, Di Cera E (2005) Thrombin functions through its rgd sequence in a non-canonical conformation. Journal of Biological Chemistry 280(33), 29393–29396

    Article  CAS  Google Scholar 

  41. Pineda AO, Carrell CJ, Bush LA, Prasad S, Caccia S, Chen ZW, Mathews FS, Di Cera E (2004a) Molecular dissection of na+ binding to thrombin. Journal of Biological Chemistry 279(30):31842–31853

  42. Pineda AO, Chen ZW, Caccia S, Cantwell AM, Savvides SN, Waksman G, Mathews FS, Di Cera E (2004b) The anticoagulant thrombin mutant w215a/e217a has a collapsed primary specificity pocket. Journal of Biological Chemistry 279(38):39824–39828

  43. Pineda AO, Chen ZW, Bah A, Garvey LC, Mathews FS, Di Cera E (2006) Crystal structure of thrombin in a self-inhibited conformation. Journal of Biological Chemistry 281(43), 32922–32928

    Article  CAS  Google Scholar 

  44. Prasad S, Cantwell AM, Bush LA, Shih P, Xu H, Di Cera E (2004) Residue asp-189 controls both substrate binding and the monovalent cation specificity of thrombin. Journal of Biological Chemistry 279(11), 10103–10108

    Article  CAS  Google Scholar 

  45. Rousseeuw PJ (1987) Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65, 10.1016/0377-0427(87)90125-7, URL http://www.sciencedirect.com/science/article/pii/0377042787901257

  46. Russo Krauss I, Merlino A, Randazzo A, Novellino E, Mazzarella L, Sica F (2012) High-resolution structures of two complexes between thrombin and thrombin-binding aptamer shed light on the role of cations in the aptamer inhibitory activity. Nucleic Acids Res 40(16), 8119–8128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Šali A, Blundell TL (1993) Comparative Protein Modelling by Satisfaction of Spatial Restraints. Journal of Molecular Biology 234(3):779–815, 10.1006/jmbi.1993.1626, URL http://linkinghub.elsevier.com/retrieve/pii/S0022283683716268

  48. Scherer MK, Trendelkamp-Schroer B, Paul F, Pérez-Hernández G, Hoffmann M, Plattner N, Wehmeyer C, Prinz JH, Noé F (2015) Pyemma 2: A software package for estimation, validation, and analysis of markov models. J Chem Theory Comput 11(11), 5525–5542

    Article  CAS  PubMed  Google Scholar 

  49. Van Gunsteren W, Berendsen HJ (1977) Algorithms for macromolecular dynamics and constraint dynamics. Mol Phys 34(5), 1311–1327

    Article  Google Scholar 

  50. Vogt AD, Bah A, Di Cera E (2010) Evidence of the E*- E equilibrium from rapid kinetics of na+ binding to activated protein c and factor xa. The Journal of Physical Chemistry B 114(49), 16125–16130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Workman Jr EF, Lundblad RL (1978) The effect of monovalent cations on the catalytic activity of thrombin. Archives of biochemistry and biophysics 185(2):544–548

    Article  CAS  PubMed  Google Scholar 

  52. Wu D, Xiao J, Salsbury Jr FR (2021) Light chain mutation effects on the dynamics of thrombin. Journal of Chemical Information and Modeling 61(2), 950–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xiao J, Salsbury FR (2017) Molecular dynamics simulations of aptamer-binding reveal generalized allostery in thrombin. J Biomol Struct Dyn 35(15), 3354–3369

    Article  CAS  PubMed  Google Scholar 

  54. Xiao J, Salsbury FR (2019) Na+-binding modes involved in thrombin’s allosteric response as revealed by molecular dynamics simulations, correlation networks and markov modeling. Phys Chem Chem Phys 21(8), 4320–4330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xiao J, Melvin RL, Salsbury FR (2017) Mechanistic insights into thrombin’s switch between “slow” and “fast” forms. Phys Chem Chem Phys 19(36), 24522–24533

  56. Xiao J, Melvin RL, Salsbury Jr FR (2019) Probing light chain mutation effects on thrombin via molecular dynamics simulations and machine learning. J Biomol Struct Dyn 37(4), 982–999

    Article  CAS  PubMed  Google Scholar 

  57. Zhang E, Tulinsky A (1997) The molecular environment of the na+ binding site of thrombin. Biophysical chemistry 63(2–3):185–200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support of the Wake Forest Baptist Comprehensive Cancer Center Crystallography & Computational Biosciences Shared Resource, supported by the National Cancer Institute’s Cancer Center Support Grant award number P30CA012197. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute. Some computations were performed on the Wake Forest University DEAC Cluster, a centrally managed resource with support provided in part by the University. FRS would also like to thank the Scott Family for the Scott Family Fellowship.

Funding

Partial support by NIH P30CA012197, Scott Family Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

DW performed the calculations, FRS oversaw the project, and DW and FRS conceived of the project and developed the analyses.

Corresponding author

Correspondence to Freddie R. Salsbury Jr.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

(PDF 10.2 MB)

Supplementary information

Supplementary information

The following format should be used: Supporting Information Available: [Sodium ion coordinated by TYR184 and five water molecules; RMSF with standard errors for unbound, double binding, outer binding, and inner binding, respectively; IMWKRescaled clustering visualization for the \(\gamma\) loop; IMWKRescaled clustering visualization for the catalytic triad; Time series plots of the alpha carbons’ root-mean-square deviation (RMSD) referring to the initial structure of the thrombin; The probability of the closest mean distance between Na\(^+\) ions and the 220s loop; Sodium ion coordinated by O\(_1\)-O\(_5\); Correlation coefficients for Figure 4e–g.]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Salsbury, F.R. Simulations suggest double sodium binding induces unexpected conformational changes in thrombin. J Mol Model 28, 120 (2022). https://doi.org/10.1007/s00894-022-05076-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05076-0

Keywords

Navigation