Skip to main content
Log in

Insights on choline chloride–based deep eutectic solvent (reline) + primary alcohol mixtures: a molecular dynamics simulation study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Deep eutectic solvents (DESs) emerged as green solvents for new generation technologies owing to their high chemical and thermal stability. Addition of restricted amount of organic solvents into the DESs plays a significant role in the improvement of thermodynamic and the transport properties to work as a potential solvent in process industries. In this paper, molecular dynamics (MD) simulations were performed to understand the thermophysical and transport properties of choline chloride–based DES (reline) and primary alcohol (methanol and ethanol) mixture in relation to microscopic structure. Density, radial distribution function, coordination number, average number of H-bond, diffusion coefficient and spatial distribution function was calculated in order to understand the structure and involvement of H-bond network at an atomic level. H-bond and spatial distribution function analyses revealed that the chloride ion prefers to be spatially distributed around hydroxyl group of alcohol and found to be more pronounced upon increase in alcohol concentration. As a consequence, it was observed that the H-bonds between Cl and urea decreases overall with the loading of alcohol and effect is more pronounced beyond a concentration of 0.4. Self-diffusion values for choline, Cl and urea were found to be increased significantly upon increase in concentration of alcohol from 0.6 to 0.8. Overall, our simulation points to the interplay and interactions between the chloride ions and the solvents in determining the structural and transport properties of choline chloride–based DES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

There is no data available in the public domain related to this work.

Code availability

N/A.

References

  1. Hsu Y-H, Leron RB, Li M-H (2014) Solubility of carbon dioxide in aqueous mixtures of (reline + monoethanolamine) at t=(313.2 to 353.2)k. J Chem Thermodyn 72:94–99

    Article  CAS  Google Scholar 

  2. Garg Sahil, Li Mengran, Rufford Thomas E, Ge Lei, Rudolph Victor, Knibbe Ruth, Konarova Muxina, Wang Geoff GX (2020) Catalyst–electrolyte interactions in aqueous reline solu tions for highly selective electrochemical CO2 reduction. ChemSusChem 13:304–311

    Article  CAS  PubMed  Google Scholar 

  3. Malik A, Dhattarwal HS, Kashyap HK (2021) Distinct solvation structures of CO2 and SO2 in reline and ethaline deep eutectic solvents revealed by aimd simulations. J Phys Chem B 125:1852–1860

    Article  CAS  PubMed  Google Scholar 

  4. Jahanbakhsh-Bonab Parisa, Esrafili Mehdi D, Ebrahimzadeh AlirezaRastkar, Sardroodi JaberJahanbin (2021) Are choline chloride-based deep eutectic solvents better than methyl diethanolamine solvents for natural gas sweetening? Theoretical insights from molecular dy namics simulations. J Mol Liq 338:116716

    Article  CAS  Google Scholar 

  5. Pal S, Paul S (2020) Understanding the role of reline, a natural DES, on temperature-induced conformational changes of C-kit G-quadruplex DNA: A molecular dynamics study. J Phys Chem B 124:3123–3136

    Article  CAS  PubMed  Google Scholar 

  6. Divsalar Adeleh, Ghobadi Roohollah (2021) The presence of deep eutectic solvents of reline and glyceline on interaction and side effect of anti-cancer drug of 5-fluorouracil: Bovine liver catalase as a target. J. Mol. Liq. 323:114588

    Article  CAS  Google Scholar 

  7. Kumari P, Kumari M, Kashyap HK (2020) How pure and hydrated reline deep eutectic solvents affect the conformation and stability of lysozyme: insights from atomistic molecular dynamics simulations. J Phys Chem B 124:11919–11927

    Article  CAS  PubMed  Google Scholar 

  8. Tran Mai K, Rodrigues Marco-Tulio F, Kato Keiko, Babu Ganguli, Ajayan Pulickel M (2019) Deep eutectic solvents for cathode recycling of li-ion batteries. Nat. Energy 4:339–345

    Article  CAS  Google Scholar 

  9. Landa-Castro M, Aldana-González J, Montes MG, de Oca-Yemha M, Romero-Romo EM Arce-Estrada, Palomar-Pardavé M (2020) Ni–co alloy electrodeposition from the cathode powder of ni-mh spent batteries leached with a deep eutectic solvent (reline). J Alloys Compd 830:154650

    Article  CAS  Google Scholar 

  10. Harati M, Love D, Lau WM, Ding Z (2012) Preparation of crystalline zinc oxide films by one-step electrodeposition in reline. Mater Lett 89:339–342

    Article  CAS  Google Scholar 

  11. Popescu A-M, Cojocaru A, Donath C, Constantin V (2013) Electrochemical study and electrodeposition of copper (I) in ionic liquid-reline. Chem Res Chinese U 29:991–997

    Article  CAS  Google Scholar 

  12. Chen H, Ye Q, He X, Ding J, Zhang Y, Han J, Liu J, Liao C, Mei J, Lau W (2014) Electrodeposited czts solar cells from reline electrolyte. Green Chem 16:3841–3845

    Article  CAS  Google Scholar 

  13. Exposito Antonio Jose, Barrie Patrick J, Torrente-Murciano Laura (2020) “Fast synthesis of CeO2 nanoparticles in a continuous microreactor using deep eutectic reline as solvent”, ACS Sustain. Chem. Eng. 8:18297–18302

    CAS  Google Scholar 

  14. Juárez-Marmolejo L, Maldonado-Teodocio B, Montes MG, de Oca-Yemha M, Romero Romo MT, Ramírez-Silva EM Arce-Estrada, Morales-Gil P, Mostany J, Palomar Pardavé M (2020) Mechanism and kinetics of palladium nanoparticles electrochemical formation onto glassy carbon, from a deep eutectic solvent (reline). J. Phys. Chem. B 124:3973–3983

    Article  PubMed  Google Scholar 

  15. Carriazo D, Concepci´on Serrano M, Concepci´on Guti´errez M, Ferrer ML, del Monte F (2012) Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials. Chem Soc Rev 41:4996–5014

    Article  CAS  PubMed  Google Scholar 

  16. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126:9142–9147

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Q, De Oliveira Vigier K, Royer S, J´erˆome F (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41:7108–7146

    Article  CAS  PubMed  Google Scholar 

  18. Park YoonKook (2021) Separation of toluene from a toluene/n-heptane mixture using ethylene glycol containing deep eutectic solvents. Korean J Chem Eng 38:604–609

    Article  CAS  Google Scholar 

  19. Vuksanović Jelena, Kijevčanin Mirjana Lj, Radović Ivona R (2018) Effect of water addition on extraction ability of eutectic solvent choline chloride+ 1, 2-propanediol for separation of hexane/heptane+ ethanol systems. Korean J Chem Eng. 35:1477–1487

    Article  Google Scholar 

  20. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082

    Article  CAS  PubMed  Google Scholar 

  21. Paiva Alexandre, Craveiro Rita, Aroso Ivo, Martins Marta, Reis Rui L, Ana Rita C, Duarte (2014) “Natural deep eutectic solvents – solvents for the 21st century”, ACS Sustain. Chem. Eng. 2:1063–1071

    CAS  Google Scholar 

  22. Dai Yuntao, van Spronsen Jaap, Witkamp Geert-Jan, Verpoorte Robert, Choi Young Hae (2013) Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 766:61–68

    Article  CAS  PubMed  Google Scholar 

  23. Jahanbakhsh-Bonab Parisa, Esrafili Mehdi D, Ebrahimzadeh AlirezaRastkar, Sardroodi JaberJahanbin (2021) Exploring the structural and transport properties of glyceline des-based boron nitride nanotube nanofluid: The effects of nanotube diameter. J. Mol. Liq. 341:117277

    Article  CAS  Google Scholar 

  24. Bonab ParisaJahanbakhsh, Esrafili Mehdi D, Ebrahimzadeh AlirezaRastkar, Sardroodi JaberJahanbin (2021) Molecular dynamics simulations of choline chloride and phenyl propionic acid deep eutectic solvents: investigation of structural and dynamics properties. J. Mol. Graph. Model. 106:107908

    Article  CAS  PubMed  Google Scholar 

  25. Agieienko V, Buchner R (2020) Variation of density, viscosity, and electrical conductivity of the deep eutectic solvent reline, composed of choline chloride and urea at a molar ratio of 1:2, mixed with dimethylsulfoxide as a cosolvent. J Chem Eng Data 65:1900–1910

    Article  CAS  Google Scholar 

  26. Durand F, Lecomte J, Bar´ea B, Dubreucq E, Lortie R, Villeneuve P (2013) Evaluation of deep eutectic solvent–water binary mixtures for lipase-catalyzed lipophilization of phenolic acids. Green Chem 15:2275–2282

    Article  CAS  Google Scholar 

  27. Shah D, Mjalli FS (2014) Effect of water on the thermo-physical properties of reline: an experimental and molecular simulation based approach. Phys Chem Chem Phys 16:23900–23907

    Article  CAS  PubMed  Google Scholar 

  28. Tang Baokun, Row Kyung Ho (2013) Recent developments in deep eutectic solvents in chemical sciences. Monatsh Chem-Chem Mon 144:1427–1454

    Article  CAS  Google Scholar 

  29. Wen Q, Chen J-X, Tang Y-L, Wang J, Yang Z (2015) Assessing the toxicity and biodegradability of deep eutectic solvents. Chemosphere 132:63–69

    Article  CAS  PubMed  Google Scholar 

  30. Farouq Sabri Mjalli and Omar Umar Ahmed (2016) Characteristics and intermolecular interaction of eutectic binary mixtures: reline and glyceline. Korean J Chem Eng 33:337–343

    Article  Google Scholar 

  31. Sun H, Li Y, Xue Wu, Li G (2013) Theoretical study on the structures and properties of mixtures of urea and choline chloride. J Mol Model 19:2433–2441

    Article  CAS  PubMed  Google Scholar 

  32. Perkins SL, Painter P, Colina CM (2014) Experimental and computational studies of choline chloride-based deep eutectic solvents. J Chem Eng Data 59:3652–3662

    Article  CAS  Google Scholar 

  33. Haghbakhsh R, Raeissi S (2018) Densities and volumetric properties of (choline chlo ride + urea) deep eutectic solvent and methanol mixtures in the temperature range of 293.15–323.15k. J Chem Thermodyn 124:10–20

    Article  CAS  Google Scholar 

  34. Haghbakhsh R, Raeissi S (2018) Investigation of solutions of ethyl alcohol and the deep eutectic solvent of reline for their volumetric properties. Fluid Ph Equilibria 472:39–47

    Article  CAS  Google Scholar 

  35. Harifi-Mood Ali Reza, Ghobadi Roohollah, Matić Sara, Minofar Babak, Reha David (2016) Solvation analysis of some solvatochromic probes in binary mixtures of reline, ethaline, and glyceline with dmso. J. Mol. Liq. 222:845–853

    Article  CAS  Google Scholar 

  36. Shobhna PK, Kaur S, Kashyap HK (2018) Influence of hydration on the structure of reline deep eutectic solvent: A molecular dynamics study. ACS Omega 3:15246–15255

    Article  PubMed  PubMed Central  Google Scholar 

  37. Celebi Alper T, Vlugt Thijs JH, Moultos OthonasA (2019) Structural, thermodynamic, and transport properties of aqueous reline and ethaline solutions from molecular dynamics simulations. J. Phys. Chem. B 123:11014–11025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sarkar S, Maity A, Chakrabarti R (2021) Microscopic structural features of water in aqueous–reline mixtures of varying compositions. Phys Chem Chem Phys 23:3779–3793

    Article  CAS  PubMed  Google Scholar 

  39. Lapeña David, Bergua Fernando, Lomba Laura, Giner Beatriz, Lafuente Carlos (2020) A comprehensive study of the thermophysical properties of reline and hydrated reline. J. Mol. Liq. 303:112679

    Article  Google Scholar 

  40. Aryafard M, Abbasi M, Reha D, Harifi-Mood AR, Minofar B (2019) Experimental and theoretical investigation of solvatochromic properties and ion solvation structure in DESs of reline, glyceline, ethaline and their mixtures with peg 400. J Mol Liq 284:59–67

    Article  CAS  Google Scholar 

  41. Eyet N, Villano SM, Bierbaum VM (2008) Deuterium kinetic isotope effects in microsolvated gas-phase E2 reactions: Methanol and ethanol as solvents. J Am Soc Mass Spectrom 19:1296–1302

    Article  CAS  Google Scholar 

  42. Roy D, Wahab MF, Talebi M, Armstrong DW (2020) Replacing methanol with azeotropic ethanol as the co-solvent for improved chiral separations with supercritical fluid chromatography (SFC). Green Chem 22:1249–1257

    Article  CAS  Google Scholar 

  43. Doherty B, Acevedo O (2018) OPLS force field for choline chloride-based deep eutectic solvents. J Phys Chem B 122:9982–9993

    Article  CAS  PubMed  Google Scholar 

  44. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  45. MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, MA Robb, JR Cheeseman, G Scalmani, V Barone, GA Petersson, H Nakatsuji, X Li, M Caricato, AV Marenich, J Bloino, BG Janesko, R Gomperts, B Mennucci, HP Hratchian, JV Ortiz, AF Izmaylov, JL Sonnenberg, D Williams-Young, F Ding, F Lipparini, F Egidi, J Goings, B Peng, A Petrone, T Henderson, D Ranasinghe, VG Zakrzewski, J Gao, N Rega, G Zheng, W Liang, M Hada, M Ehara, K Toyota, R Fukuda, J Hasegawa, M Ishida, T Nakajima, Y Honda, O Kitao, H Nakai, T Vreven, K Throssell, JA Montgomery Jr., JE Peralta, F Ogliaro, MJ Bearpark, JJ Heyd, EN Brothers, KN Kudin, VN Staroverov, TA Keith, R Kobayashi, J Normand, K Raghavachari, AP Rendell, JC Burant, SS Iyengar, J Tomasi, M Cossi, JM Millam, M Klene, C Adamo, R Cammi, JW Ochterski, RL Martin, K Morokuma, O Farkas, JB Foresman, DJ Fox, “Gaussian˜16 Revision C.01,” (2016), gaussian Inc. Wallingford CT.

  46. Martínez L, Andrade R, Birgin EG, Martínez JM (2009) Packmol: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30:2157–2164

    Article  PubMed  Google Scholar 

  47. Wu S-H, Caparanga AR, Leron RB, Li M-H (2012) Vapor pressure of aqueous choline chloride-based deep eutectic solvents (ethaline, glyceline, maline and reline) at 30–70 c. Thermochimica Acta 544:1–5

    Article  CAS  Google Scholar 

  48. Yadav A, Trivedi S, Rai R, Pandey S (2014) Densities and dynamic viscosities of (choline chloride+ glycerol) deep eutectic solvent and its aqueous mixtures in the temperature range (283.15–363.15) K. Fluid Phase Equilib 367:135–142

    Article  CAS  Google Scholar 

  49. Bussi Giovanni, Donadio Davide, Parrinello Michele (2007) Canonical sampling through velocity rescaling. J. Chem. Phys. 126:014101

    Article  PubMed  Google Scholar 

  50. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  51. Petersen HG (1995) Accuracy and efficiency of the particle mesh ewald method. J Chem Phys 103:3668–3679

    Article  CAS  Google Scholar 

  52. Luzar A, Chandler D (1996) Effect of environment on hydrogen bond dynamics in liquid water. Phys Rev Lett 76:928–931

    Article  CAS  PubMed  Google Scholar 

  53. Pethes Ildikó, Bakó Imre, Pusztai László (2020) Chloride ions as integral parts of hydrogen bonded networks in aqueous salt solutions: the appearance of solvent separated anion pairs. Phys. Chem. Chem. Phys. 22:11038–11044

    Article  CAS  PubMed  Google Scholar 

  54. Ghoufi A, Artzner F, Malfreyt P (2016) Physical properties and hydrogen-bonding network of water–ethanol mixtures from molecular dynamics simulations. J Phys Chem B 120:793–802

    Article  CAS  PubMed  Google Scholar 

  55. “Vmd: visual molecular dynamics,” J. Mol. Graph. 14, 33–38 (1996).

  56. Yeh I-C, Hummer G (2004) System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions. J Phys Chem B 108:15873–15879

    Article  CAS  Google Scholar 

  57. Bonab ParisaJahanbakhsh, Ebrahimzadeh AlirezaRastkar, Sardroodi JaberJahanbin (2021) Insights into the interactions and dynamics of a DES formed by phenyl propionic acid and choline chloride. Scientific reports 11:1–18

    Google Scholar 

  58. Prabhakar S, Weingärtner H (1983) The influence of molecular association on diffusion in the system methanol-carbon tetrachloride at 25°C. Zeitschrift für Physikalische Chemie 137:1–12

    Article  CAS  Google Scholar 

  59. Hurle Robert L, Easteal Allan J, Woolf Lawrence A (1985) Self-diffusion in monohydric alcohols under pressure. methanol, methan(2H)ol and ethanol. J. Chem. Soc., Faraday Trans 1(81):769–779

    Article  Google Scholar 

  60. Kusalik PG, Svishchev IM (1994) The spatial structure in liquid water. Science 265:1219–1221

    Article  CAS  PubMed  Google Scholar 

  61. Brehm M, Thomas M, Gehrke S, Kirchner B (2020) Travis-a free analyzer for trajectories from molecular simulation. J. Chem. Phys. 152:164105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Birla Institute of Technology, Ranchi, India, for providing the computational faculty. In addition, the authors wish to acknowledge the National Institute of Technology Warangal, India, for providing workstation through the RSM-P1123 grant.

Funding

The authors received financial support from Science and Engineering Research Board (SERB) through grant number EEQ/2020/000480.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: K. Kumar, A. Bharti and S. Mogurampelly; methodology: K. Kumar, A. Bharti and S. Mogurampelly; formal analysis and investigation: K. Kumar, A. Bharti; writing—original draft preparation: K. Kumar, A. Bharti; writing—review and editing: K. Kumar, A. Bharti and S. Mogurampelly; supervision: K. Kumar.

Corresponding author

Correspondence to Kishant Kumar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 11673 KB)

Table S1

(PDF 915 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K., Bharti, A. & Mogurampelly, S. Insights on choline chloride–based deep eutectic solvent (reline) + primary alcohol mixtures: a molecular dynamics simulation study. J Mol Model 28, 30 (2022). https://doi.org/10.1007/s00894-021-05017-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-05017-3

Keywords

Navigation