Skip to main content
Log in

Icosahedral cluster formation in Ni-based hydrogen separation amorphous membranes and the effect of hydrogenation—a first principles structural study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The demand for hydrogen is increasing due to commercialization of fuel cells. Palladium (Pd)-based crystalline membranes have been used for separation of hydrogen from a mixture of gases in coal-based power generation process. However, very high cost of Pd has prompted to explore inexpensive alternative alloys. Amorphous Ni-Nb-Zr alloy membranes are promising cheaper alternatives which exhibit comparable hydrogen permeability to Pd membranes at nominal temperature of ~ 400 °C. Constant exposure to high temperature and hydrogen pressure may lead to changes in the local atomic structure and possible devitrification of membrane. It is critical to understand short-range order of these membranes in order to improve their hydrogen permeability and durability. Icosahedral clusters are the building blocks of amorphous material and hydrogen is expected to interact with them in various different ways. The density functional theory-based molecular dynamics (DFT-MD) approach is the best suited approach to study the local atomic structures for (Ni0.6Nb0.4)90Zr10 and (Ni0.6Nb0.4)70Zr30 amorphous membranes with the help of nearest neighbor distances and icosahedral cluster analysis. It can help predict the behavior of the membrane under extreme operating conditions. Three types of icosahedra (so called Ni-centered, Zr-centered, and Nb-centered) were identified in six different compositions in these amorphous alloys. Evolution of these icosahedra with temperature and in the presence of hydrogen gave an insight into the local structure of the membrane. Zr plays an important role in the formation of icosahedra. Hydrogen atoms interact with the icosahedra in three different ways. It is observed that H atoms did not show tendency to enter Ni-centered icosahedra leading to easier hydrogen diffusion outside the icosahedra. Hence, the more the number of Ni-centered icosahedra, the better the permeation properties of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data available on University of Nevada, Reno’s NevadaBox.

Code availability

Code available on University of Nevada, Reno’s NevadaBox.

References

  1. A. Seçer, Çan Linyitinin Sorgum Biyokütlesi İle Gazlaştırılmasında Biyokütle Oranı ve Sıcaklığın Etkisi, Erzincan Üniversitesi Fen Bilim. Enstitüsü Derg. 12(2019) 1402–1412. https://doi.org/10.18185/erzifbed.532615.

  2. Dolan MD, Dave NC, Ilyushechkin AY, Morpeth LD, McLennan KG (2006) Composition and operation of hydrogen-selective amorphous alloy membranes. J Membr Sci 285:30–55. https://doi.org/10.1016/j.memsci.2006.09.014

    Article  CAS  Google Scholar 

  3. Paglieri SN, Way JD (2002) Innovations in palladium membrane research. Sep Purif Methods 31:1–169. https://doi.org/10.1081/SPM-120006115

    Article  CAS  Google Scholar 

  4. Yamaura S, Shimpo Y, Okouchi H, Nishida M, Kajita O, Inoue A (2004) The effect of additional elements on hydrogen permeation properties of melt-spun Ni-Nb-Zr amorphous alloys. Mater Trans 45:330–333. https://doi.org/10.2320/matertrans.45.330

    Article  CAS  Google Scholar 

  5. Hara S (2004) Novel hydrogen membranes permeable only to hydrogen. AIST Today 4:9

    CAS  Google Scholar 

  6. Yamaura S, Sakurai M, Hasegawa M, Wakoh K, Shimpo Y, Nishida M, Kimura H, Matsubara E, Inoue A (2005) Hydrogen permeation and structural features of melt-spun Ni–Nb–Zr amorphous alloys. Acta Mater 53:3703–3711. https://doi.org/10.1016/j.actamat.2005.04.023

    Article  CAS  Google Scholar 

  7. Sarker S, Chandra D, Hirscher M, Dolan M, Isheim D, Wermer J, Viano D, Baricco M, Udovic TJ, Grant D, Palumbo O, Paolone A, Cantelli R (2016) Developments in the Ni–Nb–Zr amorphous alloy membranes: a review. Appl Phys A 122–168.  https://doi.org/10.1007/s00339-016-9650-5

  8. Wen DD, Peng P, Jiang YQ, Tian ZA, Li W, Liu RS (2015) Correlation of the heredity of icosahedral clusters with the glass forming ability of rapidly solidified CuxZr100−x alloys. J Non-Cryst Solids 427:199–207. https://doi.org/10.1016/j.jnoncrysol.2015.07.019

    Article  CAS  Google Scholar 

  9. Wu ZW, Li MZ, Wang WH, Liu KX (2013) Correlation between structural relaxation and connectivity of icosahedral clusters in CuZr metallic glass-forming liquids. Phys Rev B 88:054202. https://doi.org/10.1103/PhysRevB.88.054202

    Article  CAS  Google Scholar 

  10. Zhang Y, Ashcraft R, Mendelev MI, Wang CZ, Kelton KF (2016) Experimental and molecular dynamics simulation study of structure of liquid and amorphous Ni62Nb38 alloy. J Chem Phys 145:204505. https://doi.org/10.1063/1.4968212

    Article  CAS  PubMed  Google Scholar 

  11. Pastore G, Smargiassi E, Buda F (1991) Theory of ab initio molecular-dynamics calculations. Phys Rev A 44:6334–6347. https://doi.org/10.1103/PhysRevA.44.6334

    Article  CAS  PubMed  Google Scholar 

  12. Hutter, Modern methods and algorithms of quantum chemistry. proc: Proceedings, NIC, Jülich, 2000.

  13. Iftimie R, Minary P, Tuckerman ME (2005) Ab initio molecular dynamics: concepts, recent developments, and future trends. Proc Natl Acad Sci 102:6654–6659. https://doi.org/10.1073/pnas.0500193102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tse JS (2002) Ab initio molecular dynamics with density functional theory. Annu Rev Phys Chem 53:249–290. https://doi.org/10.1146/annurev.physchem.53.090401.105737

    Article  CAS  PubMed  Google Scholar 

  15. Tian H, Liu H, Zhang C, Zhao J, Dong C, Wen B (2012) Ab initio molecular dynamics simulation of binary Ni62.5Nb37.5 bulk metallic glass: validation of the cluster-plus-glue-atom model. J Mater Sci 47:7628–7634. https://doi.org/10.1007/s10853-012-6306-5

    Article  CAS  Google Scholar 

  16. Fujima N, Hara K, Hoshino T, Fukuhara M (2011) Structural and electronic properties of Ni5Nb3Zr5 clusters as a local structural unit of Ni-Nb-Zr glassy alloys. Eur Phys J D 63:177–181. https://doi.org/10.1140/epjd/e2011-10514-9

    Article  CAS  Google Scholar 

  17. Sarker S, Isheim D, King G, An Q, Chandra D, Morozov SI, Page K, Wermer JN, Seidman DN, Dolan M (2018) Icosahedra clustering and short range order in Ni-Nb-Zr amorphous membranes. Sci Rep 8:6084. https://doi.org/10.1038/s41598-018-24433-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dolan M, Dave N, Morpeth L, Donelson R, Liang D, Kellam M, Song S (2009) Ni-based amorphous alloy membranes for hydrogen separation at 400°C. J Membr Sci 326:549–555. https://doi.org/10.1016/j.memsci.2008.10.030

    Article  CAS  Google Scholar 

  19. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Corso AD, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502. https://doi.org/10.1088/0953-8984/21/39/395502

    Article  PubMed  Google Scholar 

  20. Garrity KF, Bennett JW, Rabe KM, Vanderbilt D (2014) Pseudopotentials for high-throughput DFT calculations. Comput Mater Sci 81:446–452. https://doi.org/10.1016/j.commatsci.2013.08.053

    Article  CAS  Google Scholar 

  21. Palumbo O, Trequattrini F, Sarker S, Hulyakar M, Pal N, Chandra D, Dolan M, Paolone A (2017) New studies of the physical properties of metallic amorphous membranes for hydrogen purification. Challenges 8:4. https://doi.org/10.3390/challe8010004

    Article  Google Scholar 

  22. Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model Simul Mater Sci Eng 18:015012. https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  23. Stukowski A (2012) Structure identification methods for atomistic simulations of crystalline materials. Model Simul Mater Sci Eng 20:045021. https://doi.org/10.1088/0965-0393/20/4/045021

    Article  CAS  Google Scholar 

  24. Hirel P (2015) Atomsk: A tool for manipulating and converting atomic data files. Comput Phys Commun 197:212–219. https://doi.org/10.1016/j.cpc.2015.07.012

    Article  CAS  Google Scholar 

  25. Saida J, Matsushita M, Inoue A (2001) Direct observation of icosahedral cluster in Zr70Pd30 binary glassy alloy. Appl Phys Lett 79:412–414. https://doi.org/10.1063/1.1385802

    Article  CAS  Google Scholar 

  26. Yang L, Meng X, Guo G (2013) Structural origin of the pinpoint-composition effect on the glass-forming ability in the NiNb alloy system. J Mater Res 28:3170–3176. https://doi.org/10.1557/jmr.2013.318

    Article  CAS  Google Scholar 

  27. Wang S, Tian Z, Dong K, Xie Q (2021) Inconsistency of neighborhood based on Voronoi tessellation and Euclidean distance. J Alloys Compd 854:156983. https://doi.org/10.1016/j.jallcom.2020.156983

    Article  CAS  Google Scholar 

  28. Random packings and the structure of simple liquids. I. The geometry of random close packing, Proc R Soc Lond Math Phys Sci. 319 (1970) 479–493. https://doi.org/10.1098/rspa.1970.0189

  29. An Q, Samwer K, Goddard WA, Johnson WL, Jaramillo-Botero A, Garret G, Demetriou MD (2012) Predicted optimum composition for the glass-forming ability of bulk amorphous alloys: application to Cu–Zr–Al. J Phys Chem Lett 3:3143–3148. https://doi.org/10.1021/jz3014425

    Article  CAS  PubMed  Google Scholar 

  30. Oji H, Handa K, Ide J, Honma T, Yamaura S, Inoue A, Umesaki N, Emura S, Fukuhara M (2009) Local atomic structure around Ni, Nb, and Zr atoms in Ni–Nb–Zr–H glassy alloys studied by x-ray absorption fine structure method. J Appl Phys 105:113527. https://doi.org/10.1063/1.3143039

    Article  CAS  Google Scholar 

  31. Fukuhara M, Fujima N, Oji H, Inoue A, Emura S (2010) Structures of the icosahedral clusters in Ni–Nb–Zr–H glassy alloys determined by first-principles molecular dynamics calculation and XAFS measurements. J Alloys Compd 497:182–187. https://doi.org/10.1016/j.jallcom.2010.02.188

    Article  CAS  Google Scholar 

  32. Martin I, Ohkubo T, Ohnuma M, Deconihout B, Hono K (2004) Nanocrystallization of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 metallic glass. Acta Mater 52:4427–4435. https://doi.org/10.1016/j.actamat.2004.05.038

    Article  CAS  Google Scholar 

  33. Zhu ZW, Zhang HF, Ding BZ, Hu ZQ (2008) Synthesis and properties of bulk metallic glasses in the ternary Ni–Nb–Zr alloy system. Mater Sci Eng A 492:221–229. https://doi.org/10.1016/j.msea.2008.04.021

    Article  CAS  Google Scholar 

  34. Cheng YQ, Cao AJ, Sheng HW, Ma E (2008) Local order influences initiation of plastic flow in metallic glass: effects of alloy composition and sample cooling history. Acta Mater 56:5263–5275. https://doi.org/10.1016/j.actamat.2008.07.011

    Article  CAS  Google Scholar 

  35. Lee M, Lee C-M, Lee K-R, Ma E, Lee J-C (2011) Networked interpenetrating connections of icosahedra: effects on shear transformations in metallic glass. Acta Mater 59:159–170. https://doi.org/10.1016/j.actamat.2010.09.020

    Article  CAS  Google Scholar 

  36. Fujima N, Hoshino T, Fukuhara M (2013) Local structures and structural phase change in Ni-Zr-Nb glassy alloys composed of Ni5Zr5Nb3 icosahedral clusters. J Appl Phys 114:063501. https://doi.org/10.1063/1.4817500

    Article  CAS  Google Scholar 

  37. Sheng HW, Luo WK, Alamgir FM, Bai JM, Ma E (2006) Atomic packing and short-to-medium-range order in metallic glasses. Nature 439:419–425. https://doi.org/10.1038/nature04421

    Article  CAS  PubMed  Google Scholar 

  38. Sarker S (2017) Atom dynamics of amorphous materials by X-ray photon correlation spectroscopy (XPCS) & neutron spectroscopy, https://scholarworks.unr.edu//handle/11714/2064 (accessed July 21, 2021)

  39. Matsuura M, Fukuhara M, Konno K, Fujita T, Chen MW, Fujima N, Inoue A (2011) Distorted icosahedral Ni5Nb3Zr5 clusters in the as-quenched and hydrogenated amorphous (Ni0.6Nb0.4)0.65Zr0.35 alloys. J Non-Cryst Solids 357:3357–3360. https://doi.org/10.1016/j.jnoncrysol.2011.05.026

    Article  CAS  Google Scholar 

  40. Hao S, Sholl DS (2010) Comparison of first principles calculations and experiments for hydrogen permeation through amorphous ZrNi and ZrNiNb films. J Membr Sci 350:402–409. https://doi.org/10.1016/j.memsci.2010.01.017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the faculty startup support provided by the College of Engineering at the University of Nevada, Reno.

Author information

Authors and Affiliations

Authors

Contributions

Madhura Hulyalkar: methodology, investigation, and writing—original draft.

Wenye Ye: methodology, investigation, and writing—original draft.

Dhanesh Chandra: conceptualization, writing—review and editing, funding acquisition.

Leslie T Mushongera: conceptualization, writing—review and editing, funding acquisition.

Corresponding author

Correspondence to Leslie T. Mushongera.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hulyalkar, M., Ye, W., Chandra, D. et al. Icosahedral cluster formation in Ni-based hydrogen separation amorphous membranes and the effect of hydrogenation—a first principles structural study. J Mol Model 28, 4 (2022). https://doi.org/10.1007/s00894-021-05003-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-05003-9

Keywords

Navigation