Skip to main content
Log in

Ab initio molecular dynamics simulation of binary Ni62.5Nb37.5 bulk metallic glass: validation of the cluster-plus-glue-atom model

  • First Principles Computations
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We have performed ab initio molecular dynamics simulation of Ni62.5Nb37.5 alloy at descending temperatures (from 1800 to 300 K) and discussed the evolution of short-range order with temperature. The pair-correlation functions, coordination numbers, and chemical compositions of the most abundant local clusters have been analyzed. We found that icosahedral short-range order exists in the liquid, undercooled, and amorphous states, and it becomes dominant in the amorphous states. Moreover, we demonstrated the existence of Ni-centered Ni7Nb6 icosahedral clusters as the major local structural unit in the Ni62.5Nb37.5 amorphous alloy. This finding agrees well with our previous “cluster-plus-glue-atom” model for the Ni–Nb bulk metallic glasses. The positions of the first peaks of Ni–Nb pair correlation functions are lower than the sum of the metallic radii of Ni and Nb, suggesting enhanced chemical bonding between Ni and Nb atoms in Ni62.5Nb37.5 alloy. Analysis of electronic structures further revealed that the Nb-to-Ni charge transfer is responsible for the enhanced Ni–Nb bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Inoue A (1998) Bulk amorphous alloys 1 and 2. Trans Tech, Zurich

    Google Scholar 

  2. Johnson WL (1999) MRS Bull 24:42

    CAS  Google Scholar 

  3. Guo FQ, Poon SJ, Shiflet GJ (2004) Appl Phys Lett 84:37

    Article  CAS  Google Scholar 

  4. Schroers J, Johnson WL (2004) Phys Rev Lett 93:255506

    Article  Google Scholar 

  5. Greer AL (1995) Science 267:1947

    Article  CAS  Google Scholar 

  6. Drehman AJ, Greer AL, Turnbull D (1982) Appl Phys Lett 41:716

    Article  CAS  Google Scholar 

  7. Inoue A, Zhang T, Masumoto T (1990) Mater Trans 31:425

    CAS  Google Scholar 

  8. Peker A, Johnson WL (1993) Appl Phys Lett 63:2342

    Article  Google Scholar 

  9. Ponnambalam V, Poon SJ, Shiflet GJ (2004) J Mater Res 19:3046

    Article  CAS  Google Scholar 

  10. Lu ZP, Liu CT, Thompson JR et al (2004) Phys Rev Lett 92:245503

    Article  CAS  Google Scholar 

  11. Xu DH, Duan G, Johnson WL (2004) Phys Rev Lett 92:245504

    Article  Google Scholar 

  12. Xu DH, Duan G, Johnson WL et al (2004) Acta Mater 52:3493

    Article  CAS  Google Scholar 

  13. Choi-Yim H, Xu DH, Johnson WL (2003) Appl Phys Lett 82:1030

    Article  CAS  Google Scholar 

  14. Guo FQ, Poon SJ, Shiflet GJ (2003) Appl Phys Lett 83:2575

    Article  CAS  Google Scholar 

  15. Inoue A, Kato A, Zhang T et al (1991) Mater Trans JIM 32:609

    CAS  Google Scholar 

  16. Wang D, Li Y, Sun BB et al (2004) Appl Phys Lett 84:4029

    Article  CAS  Google Scholar 

  17. Xu DH, Lohwongwatana B, Duan G et al (2004) Acta Mater 52:2621

    Article  CAS  Google Scholar 

  18. Inoue A, Zhang W (2004) Mater Trans 45:584

    Article  CAS  Google Scholar 

  19. Tang MB, Zhao DQ, Pan MX et al (2004) Chin Phys Lett 21:901

    Article  CAS  Google Scholar 

  20. Duan G, Xu DH, Johnson WL (2005) Metall Mater Trans A 36A:455

    Article  CAS  Google Scholar 

  21. Xia L, Li WH, Fang SS et al (2006) J Appl Phys 99:026103

    Article  Google Scholar 

  22. Zhu Z, Zhang H, Pan D et al (2006) Adv Eng Mater 8:953

    Article  CAS  Google Scholar 

  23. Wang Y, Wang Q, Zhao J et al (2010) Scripta Mater 63:178

    Article  CAS  Google Scholar 

  24. De Boer FR, Boom R, Matterns WCM et al (1989) Cohesion in metals. North-Holland, Amsterdam

    Google Scholar 

  25. Ruhl RC, Giessen BC, Cohen M et al (1967) Acta Metall 15:1693

    Article  CAS  Google Scholar 

  26. Leonhardt M, Loser W, Lindenkreuz HG (1999) Scripta Mater 47:2961

    CAS  Google Scholar 

  27. Xia L, Li WH, Fang SS et al (2006) J Appl Phys 99:026103

    Article  Google Scholar 

  28. Dong C, Wang Q, Qiang JB et al (2007) J Phys D Appl Phys 40:R273

    Article  CAS  Google Scholar 

  29. Miracle DB (2004) Nat Mater 3:697

    Article  CAS  Google Scholar 

  30. Lamparter P, Steeb S (1991) In: Gerold (ed) Materials science & technology. VCH, Weinheim, p 217

    Google Scholar 

  31. Kreuch G, Hafner J (1995) J Non Cryst Solids 189:227

    Article  CAS  Google Scholar 

  32. Dong C, Wang Q, Qiang JB et al (2007) J Phys D Appl Phys 40:R273

    Article  CAS  Google Scholar 

  33. Pusztai L, Svab E (1993) J Non Cryst Solids 156:973

    Article  Google Scholar 

  34. Steeb S, Lamparter P (1993) J Non Cryst Solids 156:24

    Article  Google Scholar 

  35. Mendelev MI, Belashchenko DK, Ishmaev SN (1996) J Non Cryst Solids 207:888

    Article  Google Scholar 

  36. Belashchenko DK, Ostrovskii OI (2006) Russ J Phys Chem 80:509

    Article  CAS  Google Scholar 

  37. Svab E, Meszaros G, Konczos G et al (1988) J Non Cryst Solids 104:291

    Article  CAS  Google Scholar 

  38. Svab E, Meszaros G, Takacs J et al (1992) J Non Cryst Solids 144:99

    Article  CAS  Google Scholar 

  39. Zhang Q, Lai WS, Liu BX (2000) J Non Cryst Solids 261:137

    Article  CAS  Google Scholar 

  40. Tian H, Zhang C, Wang L et al (2011) J Appl Phys 109:123520

    Article  Google Scholar 

  41. Kresse G, Furthmuller J (1996) Comput Mater Sci 6:15

    Article  CAS  Google Scholar 

  42. Nose S (1984) J Chem Phys 81:511

    Article  CAS  Google Scholar 

  43. Vanderbilt D (1990) Phys Rev B 41:7892

    Article  Google Scholar 

  44. Kresse G, Hafner J (1994) J Phys Condens Matter 6:8245

    Article  CAS  Google Scholar 

  45. Wang Y, Perdew JP (1991) Phys Rev B 44:13298

    Article  Google Scholar 

  46. Jakse N, Le Bacq O, Pasturel A (2004) Phys Rev B 70:174203

    Article  Google Scholar 

  47. Jakse N, Pasturel A (2004) J Chem Phys 120:6124

    Article  CAS  Google Scholar 

  48. Pasturel A, Jakse N (2011) Phys Rev B 84:134201

    Article  Google Scholar 

  49. Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, New York

    Google Scholar 

  50. Narasimhan S, Ho TL (1988) Phys Rev B 37:800

    Article  Google Scholar 

  51. Frank FC, Kasper JS (1958) Acta Crystallogr 11:184

    Article  CAS  Google Scholar 

  52. Frank FC, Kasper JS (1959) Acta Crystallogr 12:483

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was financially supported by the National Natural Science Foundation of China (Nos. 51171035, 50901012, 11174044, 51131002, and 41174071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jijun Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, H., Liu, H., Zhang, C. et al. Ab initio molecular dynamics simulation of binary Ni62.5Nb37.5 bulk metallic glass: validation of the cluster-plus-glue-atom model. J Mater Sci 47, 7628–7634 (2012). https://doi.org/10.1007/s10853-012-6306-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6306-5

Keywords

Navigation