Skip to main content

Advertisement

Log in

Combination multi-nitrogen with high heat of formation: theoretical studies on the performance of bridged 1,2,4,5-tetrazine derivatives

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A series of bridged tetrazine derivatives (BDDT) were designed by using different bridges to connect two molecules of 1,2,4, 5-tetrazine oxides and then combining different substituents. At the same time, we used DFT-wB97/6–31 + G** method to regularly predict the HOMO–LUMO, heats of formation (HOF), detonation properties, thermal stability, and thermodynamic property orbitals of BDDT compounds. By studying the comprehensive relationship between different substituents and bridging and performance, it is shown that -N(NO2)2 and -C(NO2)3 are not only excellent groups to improve the heat of formation and detonation properties, but also can cause the compound to have a superior oxygen balance. And that the incorporation of the -N = N- and -NH-N = N- is helpful to enhance their thermal stabilities and HOF. -CH2-CH2- and -CH2-NH- are good for improving the HOMO–LUMO energy gaps. Performances with positive HOF (1170–1590 kJ mol−1), remarkable density (1.88–1.93 g cm−3), outstanding detonation properties (D = 9.15–9.80 km s−1, P = 38.24–44.40 GPa), and acceptable impact sensitivity lead C5, D8, E5, E7, F5, and F7 to be the potential candidates of HEDMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The application or custom code are available from the corresponding author upon reasonable request.

References

  1. Jia YF, Ma Q, Zhang ZQ, Geng WJ, Huang JL, Yang W, Fan GJ, Wang SM (2020) Energetic 1H-imidazo[4,5-d]pyridazine-2,4,7-triamine: a novel nitrogen-rich fused heterocyclic cation with high density. Cryst Growth Des 20:3406–3412

    Article  CAS  Google Scholar 

  2. Wu JT, Xu J, Li W, Li HB (2020) Coplanar fused heterocycle-based energetic materials. Propellants Explos Pyrotech 45:536–545

    Article  CAS  Google Scholar 

  3. Tang YX, He CL, Imler GH, Parrish DA, Shreeve JM (2019) Aminonitro groups surrounding a fused pyrazolotriazine ring: a superior thermally stable and insensitive energetic material. Acs Appl Energy Mater 2:2263–2267

    Article  CAS  Google Scholar 

  4. Pan Y, Zhu WH, Xiao HM (2013) Theoretical studies on the structures, heats of formation, energetic properties and pyrolysis mechanisms of nitrogen-rich difurazano[3,4-b:3′,4′-e]piperazine derivatives and their analogues. Struct Chem 24:1071–1087

    Article  CAS  Google Scholar 

  5. Solomos MA, Bertke JA, Swift JA (2018) One step synthesis of a fused four-ring heterocycle. New J Chem 42:7125–7129

    Article  CAS  Google Scholar 

  6. Steele BA, Oleynik II (2017) Novel potassium polynitrides at high pressures. J Phys Chem A 121:8955–8961

    Article  CAS  PubMed  Google Scholar 

  7. Zhang J, Shreeve JM (2014) 3,3′-dinitroamino-4,4′-azoxyfurazan and its derivatives: an assembly of diverse N-O building blocks for high-performance energetic materials. J Am Chem Soc 136:4437–4444

    Article  CAS  PubMed  Google Scholar 

  8. Kumar D, Imler GH, Parrish DA, Shreeve JM (2017) A highly stable and insensitive fused triazolotriazine explosive (TTX). Chem Eur J 23:1743–1747

    Article  CAS  PubMed  Google Scholar 

  9. Zhang J, Shreeve JM (2014) Thermally stable 3, 6dinitropyrazolo [4, 3c] pyrazole based energetic materials. Chem Asian J 9:2953–2960

    Article  CAS  PubMed  Google Scholar 

  10. Yin P, He C, Shreeve JM (2016) Fused heterocyclebased energetic salts: alliance of pyrazole and 1, 2, 3triazole. J Mater Chem A 4:1514–1519

    Article  CAS  Google Scholar 

  11. Klenov MS, Guskov AA, Anikin OV, Churakov AM, Strelenko YA, Fedyanin IV, Lyssenko KA, Tartakovsky VA (2016) Synthesis of tetrazinotetrazine 1,3,6,8tetraoxide (TTTO). Angew Chem Int Ed 55:11472–11475

    Article  CAS  Google Scholar 

  12. Tang Y, Kumar D, Shreeve JM (2017) Balancing excellent performance and high thermal stability in a dinitropyrazole fused 1, 2, 3, 4tetrazine. J Am Chem Soc 139:13684–13687

    Article  CAS  PubMed  Google Scholar 

  13. Kaihoh T, Itoh T, Yamaguchi K, Ohsawa A (1988) First synthesis of a 1, 2, 3, 4tetrazine. J Chem Soc Chem Commun 1:1608–1609

    Article  Google Scholar 

  14. Thottempudi V, Yin P, Zhang J, Parrish DA, JnM S (2014) 1,2,3Triazolo [4,5, e] furazano [3,4, b] pyrazine 6oxide—a fused heterocycle with a roving hydrogen forms a new class of insensitive energetic materials. Chem Eur J 20:542–548

    Article  CAS  PubMed  Google Scholar 

  15. Piercey DG, Chavez DE, Scott BL, Imler GH, Parrish DA (2016) An energetic triazolo 1,2,4 triazine and its N⁃oxide. Angew Chem Int Ed 55:15315–15318

    Article  CAS  Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann E, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Iiskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Chen BJW, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.01. Gaussian Inc., Pittsburgh

    Google Scholar 

  17. Byrd EF, Rice BM (2006) J Phys Chem A 110:1005

    Article  CAS  PubMed  Google Scholar 

  18. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  19. Murray JS, Politzer P (1994) Quantitative treatment of solute/solvent interactions, Theoretical and Computational Chemistry. Elsevier Scientific, Amsterdam

    Google Scholar 

  20. Politzer P, Murray JS, Brinck T, Lane P (1994) Immunoanalysis of agrochemicals, ACS Symp Ser 586. American Chemical Society, Washington, DC

    Google Scholar 

  21. Atkins PW (1982) Physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  22. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbe A (2009) An electrostatic interaction correction for improved crystal density prediction. Mol Phys 107:2095–2101

    Article  CAS  Google Scholar 

  23. Kamlet MJ, Jacobs SJ (1968) Chemistry of detonations. I. A simple method for calculating detonation properties of C-H–N–O explosives. J Chem Phys 48:23–35

    Article  CAS  Google Scholar 

  24. Kamlet MJ, Ablard JE (1968) Chemistry of detonations. II. Buffered equilibria. J Chem Phys 48:36–42

    Article  CAS  Google Scholar 

  25. Kamlet MJ, Dickinson C (1968) Chemistry of detonations. III. Evaluation of the simplified calculational method for Chapman-Jouguet detonation pressures on the basis of available experimental information. J Chem Phys 48:43–50

    Article  CAS  Google Scholar 

  26. Rice BM, Hare JJ (2002) A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules. J Phys Chem 106:1770–1783

    Article  CAS  Google Scholar 

  27. Ryu J, Bok T, Joo SH, Yoo S, Song G, Kim SH, Choi S, Jeong HY, Kim MG, Kang SJ, Wang C, Kwak SK, Park S (2021) Electrochemical scissoring of disordered silicon-carbon composites for high-performance lithium storage. Energy Storage Mater 36:139–146

    Article  Google Scholar 

  28. Zhong M, DaZou XuYB, Jin LJ, Pan Y (2021) Effect of kaolinites modified with Zr and transition metals on the pyrolysis behaviors of low-rank coal and its model compound. J Energy Inst 95:41–51

    Article  CAS  Google Scholar 

  29. Tang YX, Imer GH, Parrish DA, Shreeve JM (2019) Energetic and fluorescent azole-fused 4-amino-1,2,3-triazine-3-N-oxides. Acs Appl Energy Mater 2:8871–8877

    Article  CAS  Google Scholar 

  30. Suvitha A, Periandy S, Boomadevi S, Govindarajan M (2014) Vibrational frequency analysis, FT-IR, FT-Raman, ab initio, HF and DFT studies, NBO, HOMO-LUMO and electronic structure calculations on pycolinaldehyde oxime. Spectrochim Acta A 117:216–224

    Article  CAS  Google Scholar 

  31. Kosar B, Albayrak C (2011) Spectroscopic investigations. and quantum chemical computational study of (E)-4-methoxy-2-[(p-tolylimino)methyl]phenol. Spectrochim Acta A 78:160–167

    Article  Google Scholar 

  32. Simpson RL, Urtiew PA, Ornellas DL, Moody GL, Scribner KJ, Hoffman DM (1997) Propellants Explos Pyrotech 22:249

    Article  CAS  Google Scholar 

  33. Politzer P, Murray JS (2011) Some perspectives on estimating detonation properties of C, H, N, O compounds. Cent Eur J Energy Mater 8:209–220

    CAS  Google Scholar 

  34. Jeong K (2018) New theoretically predicted RDX- and -HMX-based high-energy-density molecules. Int J Quantum Chem 118:e25528

  35. He P, Zhang JG, Wang K, Yin X, Jin X, Zhang TL (2015) Extensive theoretical studies on two new members of the FOX-7 family: 5-(dinitromethylene)-1,4-dinitramino-tetrazole and 1,1 ′-dinitro-4,4 ′-diamino-5,5 ′-bitetrazole as energetic compounds. Phys Chem Chem Phys 17:5840–5848

    Article  CAS  PubMed  Google Scholar 

  36. Pan Y, Zhu WH, Xiao HM (2012) Design and selection of nitrogen-rich bridged di-1,3,5-triazine derivatives with high energy and reduced sensitivity. J Mol Model 18:3125–3138

    Article  CAS  PubMed  Google Scholar 

  37. Zhu WH, Zhang CC, Wei T, Xiao HM (2011) Computational study of energetic nitrogen-rich derivatives of 1,1 ′- and 5,5 ′-bridged ditetrazoles. J Comput Chem 32:2298–2312

    Article  CAS  PubMed  Google Scholar 

  38. Zhai LJ, Bi FQ, Zhang JL, Zhang JR, Li XZ, Wang BZ, Chen SP (2020) 3,4-Bis(3-tetrazolylfuroxan-4-yl)furoxan: a linear C-C bonded pentaheterocyclic energetic material with high heat of formation and superior performance. ACS Omega 5:11115–11122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pu KY, Wang LY, Liu J, Zhong K (2020) Theoretical design of bis-azole derivatives for energetic compounds. RSC Adv 10:13185–13195

    Article  CAS  Google Scholar 

  40. Borisov YA, Makarenkov AV, Kiselev SS, Kononova EG, Ponomaryov AB, Budnik MI, Ol’shevskaya VA (2020) Prediction of energetic properties of carboranyl tetrazoles based on DFT study. Mater Chem Phys 240:122209

  41. Lin H, Zhu Q, Huang C, Yang DD, Lou N, Zhu SG, Li HZ (2019) Dinitromethyl, fluorodinitromethyl derivatives of RDX and HMX as high energy density materials: a computational study. Struct Chem 30:2401–2408

    Article  CAS  Google Scholar 

  42. Srivastava P, Singh HJ (2010) Computational studies on nitro-azaboriridinea high-energetic material. J Energy Mater 28:202–218

    Article  CAS  Google Scholar 

  43. Politzer P, Murray JS (2016) High performance, low sensitivity: conflicting or compatible? Propellants Explosive Pyrotech 41:414–425

    Article  CAS  Google Scholar 

  44. Ghule VD (2012) Computational studies on the triazole-based high energy materials. Comput Theor Chem 992:92–96

    Article  CAS  Google Scholar 

  45. Schmalz T, Seitz WA, Klein DJ, Hite G (1988) Elemental carbon gages. J Am Chem Soc 110:1113–1127

    Article  CAS  Google Scholar 

  46. Zhang J, Xiao H (2002) Computational studies on the infrared vibrational spectra, thermodynamic properties, detonation properties, and pyrolysis mechanism of octanitrocubane. J Chem Phys 116:10674–10683

    Article  CAS  Google Scholar 

  47. Qiu L, Xiao H, Gong X, Ju X, Zhu W (2006) Theoretical studies on the structures, thermodynamic properties, detonation properties, and pyrolysis mechanisms of spiro nitramines. J Phys Chem A 110:3797–3807

    Article  CAS  PubMed  Google Scholar 

  48. Lewczuk R, Ksiazek M, Ganczyk-Specjalska K, Cieslak K (2020) Structure and thermal properties of 2,2′-azobis(1H-imidazole-4,5-dicarbonitrile)-a promising starting material for a novel group of energetic compounds. Molecules 25:314–324

    Article  CAS  PubMed Central  Google Scholar 

  49. Ma Q, Jiang T, Zhang XY, Fan GJ, Wang J, Huang JL (2015) Theoretical investigations on 4,4 ′,5,5 ′-tetranitro-2,2 ′-1H,1 ′ H-2,2 ′-biimidazole derivatives as potential nitrogen-rich high energy materials. J Phys Org Chem 28:31–39

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Opening Project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology) (NO. KFJJ20-03 M), Doctoral Fundation of SWUST (NO. 17zx7128), and Major Special Projects of the Equipment Development Department of the Central Military Commission of China (NO. 14021001040305–5).

Author information

Authors and Affiliations

Authors

Contributions

Lian Zeng: the first author, conceive and write the manuscript; Junyan Li, Chen Qiao, and Yuhe Jiang: data collection; Jinting Wu, Hongbo Li: corresponding author; Jianguo Zhang: methods to guide.

Corresponding authors

Correspondence to Jinting Wu or Hongbo Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, L., Li, J., Qiao, C. et al. Combination multi-nitrogen with high heat of formation: theoretical studies on the performance of bridged 1,2,4,5-tetrazine derivatives. J Mol Model 28, 3 (2022). https://doi.org/10.1007/s00894-021-04999-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04999-4

Keywords

Navigation