Skip to main content
Log in

Essential features for antioxidant capacity of ascorbic acid (vitamin C)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Vitamin C or ascorbic acid is an indispensable micronutrient for human health found principally on citrus species such as lemon and orange fruits and vegetables. It was involved in the production of proteins such as collagen. Its biochemical mechanism is related to its antioxidant capacity; however, its function at the cellular level is still unclear. Several theoretical studies about antioxidant and redox mechanisms for ascorbic acid were suggested; however, no derivative was proposed. Thereby, an electronic study of antioxidant capacity for ascorbic acid derivatives was performed using theoretical chemistry at the DFT/ B3LYP/6–311 +  + (2d,2p) level of theory. Simplified derivatives show that enol hydroxyls are more important than any other functional group. The vicinal enolic hydroxyl on β position is more important for antioxidant capacity of ascorbic than hydroxyl on α position. According to our molecular modifications, the keto-alkene compound showed the best values when compared to ascorbic acid in some molecular characteristics. No lactone derivatives have superior application potential as antioxidant when compared with ascorbic acid. Several structures are possible to be proposed and were related to spin density contributions and the increase of chemical stability. New promising structural derivatives related to ascorbic acid can be developed in the future.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Gaussian 09 software code G9S016832734579W-5269 N.

References

  1. Sorice A, Guerriero E, Capone F, Colonna G, Castello G, Costantini S (2014) Mini Rev Med Chem 14(5):444–452

    Article  CAS  Google Scholar 

  2. Du J, Cullen JJ, Buettner GR (2012) Biochim Biophys Acta 1826(2):443–457

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Aditi A, Graham DY (2012) Dig Dis Sci 57(10):2504–2515

    Article  CAS  Google Scholar 

  4. Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee J-H, Chen S, Corpe C, Dutta A, Dutta SK, Levine M (2013) J Am College Nut 22(1):18–35

    Article  Google Scholar 

  5. Berg RW (2015) Appl Spect Rev 50(3):193–239

    Article  CAS  Google Scholar 

  6. Higgins MR, Izadi A, Kaviani M (2020) Int J Environ Res Public Health 17(22):8452

    Article  CAS  Google Scholar 

  7. Baschieri A, Amorati R, Benelli T, Mazzocchetti L, D’Angelo E, Valgimigli L (2019) Antioxidants 8(2):30

    Article  Google Scholar 

  8. Bradshaw MP, Barril C, Clark AC, Prenzler PD, Scollary GR (2011) Crit Rev Food Sci Nut 51(6):479–498

    Article  CAS  Google Scholar 

  9. Gueguen S, Pirollet P, Leroy P, Guilland J-C, Arnaud J, Paille F, Siest G, Visvikis S, Hercberg S, Herbeth B (2003) J Am Coll Nut 22(4):303–310

    Article  CAS  Google Scholar 

  10. Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, Dhama K (2014) Biomed Res Int 2014:761264

  11. Kaźmierczak-Barańska J, Boguszewska K, Adamus-Grabicka A, Karwowski BT (2020) Nutrients 12(5):1501

    Article  Google Scholar 

  12. Gale CR, Ashurst HE, Powers HJ, Martyn CN (2001) Am J Clin Nutr 74(3):402–408

    Article  CAS  Google Scholar 

  13. Kim T-J, Byun J-S, Kwon HS, Kim D-Y (2018) Biochem Biophys Res Commun 497(1):347–353

    Article  CAS  Google Scholar 

  14. Shenoy N, Creagan E, Witzig T, Levine M (2018) Cancer Cell 34(5):700–706

    Article  CAS  Google Scholar 

  15. Moritz B, Schmitz AE, Rodrigues ALS, Dafre AL, Cunha MP (2020) J Nut Biochem 85:108459

    Article  CAS  Google Scholar 

  16. Nimse SB, Pal D (2015) RSC Adv 5:27986–28006

    Article  CAS  Google Scholar 

  17. Stewart JJP (2004) J Mol Model 10(2):155–164

    Article  CAS  Google Scholar 

  18. Theophilou AK (2018) J Chem Phys 149:074104

    Article  Google Scholar 

  19. Lee C, Yang W, Parr RG (1998) Phys Rev B 37:785–789

    Article  Google Scholar 

  20. Yu JK, Bannwarth C, Hohenstein EG, Martínez TJ (2020) J Chem Theory Comput 16(9):5499–5511

    Article  CAS  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery-Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 09, Revision A.02

  22. Lobato CC, Ordoñez ME, Queiroz RL, Santos CBR, Borges RS (2020) Chem Data Collect 28:100464

    Article  CAS  Google Scholar 

  23. Messaadia L, Bekkar Y, Benamira M, Lahmar H (2020) Chem Phys Impact 1:100007

    Article  Google Scholar 

  24. Queiroz AN, Gomes BAQ, Moraes WM, Borges RS (2009) Eur J Med Chem 44(4):1644–1649

    Article  CAS  Google Scholar 

  25. Rajan VK, Muraleedharan K (2017) Food Chem 220:93–99

    Article  CAS  Google Scholar 

  26. Leopoldini M, Russo N, Toscano M (2011) Food Chem 125(2):288–306

    Article  CAS  Google Scholar 

  27. Borges RS, Castle SL (2015) Bioorg Med Chem Lett 25(21):4808–4811

    Article  CAS  Google Scholar 

  28. Ma Y, Feng Y, Diao T, Zeng W, Zuo Y (2020) J Mol Struct 1204:127509

    Article  CAS  Google Scholar 

  29. Hernandez DA, Rodriguez-Zavala JG, Tenorio FJ (2020) Struct Chem 31(1):359–369

    Article  CAS  Google Scholar 

  30. Santos KLB, Queiroz AN, Lobato CC, Vale JKL, Borges RS (2021) J Mol Model 27(2):26

    Article  CAS  Google Scholar 

  31. Borges RS, Carneiro AS, Barros TG, Barros CAL, Chaves Neto AMJ, da Silva ABF (2014) J Mol Model 20(12):2541

    Article  Google Scholar 

  32. Demianenko E, Ilchenko M, Grebenyuk A, Lobanov V, Tsendra O (2014) J Mol Model 20(3):2128

    Article  Google Scholar 

  33. Bichara LC, Lanús HE, Nieto CG, Brandán AS (2010) J Phys Chem A 114(14):4997–5004

    Article  CAS  Google Scholar 

  34. Borges RS, Costa FM, Pereira TL, Araújo RL, Almeida ED, da Silva ABF (2018) J Braz Chem Soc 29(3):609–614

    CAS  Google Scholar 

  35. Diniz JEM, Borges RS, Alves CN (2004) J Mol Struct THEOCHEM 673(1–3):93–97

    Article  CAS  Google Scholar 

  36. Alves CN, Borges RS, da Silva ABF (2006) Int J Quantum Chem 106(13):2617–2623

    Article  CAS  Google Scholar 

  37. Borges RS, Queiroz AN, Mendes APS, Araújo SC, França LCS, Franco ECS, Leal WG, da Silva ABF (2012) Int J Mol Sci 13(6):7594–7606

    Article  CAS  Google Scholar 

  38. Liu Y, Liu C, Li J (2020) ACS Omega 5(39):25467–25475

    Article  CAS  Google Scholar 

  39. das Neves PAPFG, Lobato CC, Ferreira LR, Bragança VAN, Veiga AAS, Ordoñez ME, Barros VA, de Aguiar CPO, Borges RS (2020) J Mol Model 26:318

Download references

Funding

Authors are grateful to CNPq for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Kelton L. B. Santos and Rosivaldo S. Borges; data extraction, Kelton L. B. Santos, and Larysse V. Pacheco; structure–reactivity, Vitor A. N. Bragança; calculations, Kelton L. B. Santos; electronic properties, Sirlene S. B. Ota; editing, Christiane P. O. Aguiar; final version, Rosivaldo S. Borges.

Corresponding author

Correspondence to Rosivaldo S. Borges.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Yes.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, K.L.B., Bragança, V.A.N., Pacheco, L.V. et al. Essential features for antioxidant capacity of ascorbic acid (vitamin C). J Mol Model 28, 1 (2022). https://doi.org/10.1007/s00894-021-04994-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04994-9

Keywords

Navigation