Skip to main content

Antioxidative Activity of Vitamin E

  • Chapter
  • First Online:
Vitamin E in Human Health

Part of the book series: Nutrition and Health ((NH))

Abstract

Vitamin E includes lipophilic derivatives of chromanol having one, two, or three methyl substituents on the phenolic ring. Vitamin E molecules, mainly α- and γ-tocopherols, are the most important antioxidants in nature. Their antioxidant effect is optimum at a certain range of concentrations, above which the vitamin exhibits a loss of efficacy or a prooxidant effect depending on the external conditions, including the nature of existing lipids and interfacial compounds, temperature, etc. Recent understandings of antioxidant mechanisms highlighted the importance of the microenvironment and how it influences synergistic and antagonistic interactions. Vitamin E components are not only antioxidants protecting polyunsaturated fatty acids from free radical attack, but they also seem to have stabilizing role in cell membranes, where molecular organization plays a very important role. In biological systems, α-tocopherol functions as part of an integrated antioxidant defense system in concert with vitamin C and other hydrophilic components. This chapter reviews the chemical basis of the antioxidant mechanism of vitamin E according to contemporary knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans HM, Bishop KS. On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science. 1922;56:649–51.

    Article  Google Scholar 

  2. Evans HM, Emerson OH, Emerson GA. The isolation from wheat germ oil of an alcohol, α-tocopherol, having the properties of vitamin E. J Biol Chem. 1936;113:319–32.

    CAS  Google Scholar 

  3. IUPAC-IUB. Nomenclature of quinones with isoprenoid side-chains. Eur J Biochem. 1975;53:15–8.

    Article  Google Scholar 

  4. IUPAC-IUB. Nomenclature of tocopherols and related compounds. Pure Appl Chem. 1982;54:1507–10.

    Article  Google Scholar 

  5. Bieri JG, McKenna MC. Expressing dietary values for fat-soluble vitamins: changes in concepts and terminology. Am J Clin Nutr. 1981;34:289–95.

    Article  CAS  Google Scholar 

  6. Kamal-Eldin A, Appelqvist L-Å. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids. 1996;31:671–701.

    Article  CAS  Google Scholar 

  7. Kruk J, Szymańska R, Cela J, Munne-Bosch S. Plastochromanol-8: fifty years of research. Phytochemistry. 2014;108:9–16.

    Article  CAS  Google Scholar 

  8. Obranovic M, Škevin D, Kraljić K, Putnik P. Influence of climate, variety and production process on tocopherols, plastochromanol-8 and pigments in flaxseed oil. Food Technol Biotechnol. 2015;53:496–504.

    Article  CAS  Google Scholar 

  9. Burton GW, Ingold KU. Autoxidation of biological molecules. 1. The antioxidant activity of vitamin E and related chain breaking phenolic antioxidants in vitro. J Am Chem Soc. 1981;103:6472–7.

    Article  CAS  Google Scholar 

  10. Olcott HS, Emerson OH. Antioxidants and the autoxidation of fats. IX. The antioxidant properties of the tocopherols. J Am Chem Soc. 1937;59:1008–9.

    Article  CAS  Google Scholar 

  11. Budilarto E, Kamal-Eldin A. The supramolecular chemistry of lipid oxidation and antioxidation in bulk oils. Eur J Lipid Sci Technol. 2015a;117:1095–37.

    Article  CAS  Google Scholar 

  12. Labuza TP, Jr Dugan LR. Kinetics of lipid oxidation in food. Crit Rev Food Sci Nutr. 1971;2:355–405.

    Google Scholar 

  13. Cadenas E, Sies H. The lag phase. Free Rad Res. 1998;28:601–9.

    Article  CAS  Google Scholar 

  14. Brimberg U. On the kinetics of the autoxidation of fats. J Am Oil Chem Soc. 1993a;70:249–54.

    Article  CAS  Google Scholar 

  15. Brimberg U. On the kinetics of the autoxidation of fats II. Monounsaturated substrates. J Am Oil Chem Soc. 1993b;70:1063–7.

    Article  CAS  Google Scholar 

  16. Brimberg U, Kamal-Eldin A. On the kinetics of the autoxidation of fats: substrates with conjugated double bonds. Eur J Lipid Sci Technol. 2003a;105:17–22.

    Article  CAS  Google Scholar 

  17. Brimberg U, Kamal-Eldin A. On the kinetics of the autoxidation of fats: influence of prooxidants, antioxidants and synergists. Eur J Lipid Sci Technol. 2003b;105:83–91.

    Article  CAS  Google Scholar 

  18. Nagaoka S, Sawada K, Fukumoto Y, Nagashima U, Katasumata S, Mukai K. Mechanism of antioxidant reaction of vitamin E: kinetic, spectroscopic and ab initio study of proton-transfer reactions. J Phys Chem. 1992;96:6663–8.

    Article  CAS  Google Scholar 

  19. Makinen M, Kamal-Eldin A, Lampi AM, Hopia A. Effects of α- and γ-tocopherol on formation of hydroperoxides and two decomposition products from methyl linoleate. J Am Oil Chem Soc. 2000;77:801–6.

    Article  CAS  Google Scholar 

  20. Lebold KM, Kirkwood JS, Taylor AW, Choi J, Barton CL, Miller GW, Du JL, Jump DB, Stevens JF, Tanguay RL, Traber MG. Novel liquid chromatography–mass spectrometry method shows that vitamin E deficiency depletes arachidonic and docosahexaenoic acids in zebrafish (Danio rerio) embryos. Redox Biol. 2014;2:105–13.

    Article  CAS  Google Scholar 

  21. Budilarto E, Kamal-Eldin A. Stabilization of cod liver oil with a quaternary combination of α-tocopherol and synergists: method of assessment. Eur J Lipid Sci Technol. 2015b;117:1598–606.

    Article  CAS  Google Scholar 

  22. Thong NM, Nam PC. Theoretical investigation on antioxidant activity of phenolic compounds extracted from Artocarpus altilis. In: Toi V, Lien Phuong T, editors. IFMBE Proceedings, 5th International conference on biomedical engineering in Vietnam Springer, vol. 46, pp. 464–469; 2015.

    Google Scholar 

  23. Wright JS, Johnson ER, DiLabio GA. Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc. 2001;123:1173–83.

    Article  CAS  Google Scholar 

  24. Burton GW, Joyce A, Ingold KU. Is vitamin E the only lipid-soluble, chain-breaking antioxidant in human blood plasma and erythrocyte membranes? Arch Biochem Biophys. 1983;221:281–90.

    Article  CAS  Google Scholar 

  25. Traber MG, Atkinson J. Vitamin E: antioxidant and nothing more. Free Radic Biol Med. 2007;43:4–15.

    Article  CAS  Google Scholar 

  26. Wang X, Quinn PJ. Vitamin E and its function in membranes. Prog Lipid Res. 1999;38:309–36.

    Article  CAS  Google Scholar 

  27. Buettner GR. The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch Biochem Biophys. 1993;300:535–43.

    Article  CAS  Google Scholar 

  28. Parker RS. Dietary and biochemical aspects of vitamin E. Adv Food Nutr Res. 1989;33:158–33.

    Google Scholar 

  29. Leng X, Kinnun JJ, Marquardt D, Ghefli M, Kucerka N, Katsaras J, Atkinson J, Harroun TA, Feller SE, Wassall SR. α-Tocopherol is well designed to protect polyunsaturated phospholipids: MD simulations. Biophys J. 2015;109:1608–18.

    Article  CAS  Google Scholar 

  30. Porter WL. Paradoxical behavior of antioxidants in food and biological systems. In: Williams GM, editor. Antioxidants: chemical, physiological, nutritional and toxicological aspects. Princeton: Princeton Scientific; 1993. p. 93–122.

    Google Scholar 

  31. Bowry VW, Ingold KU, Stocker R. Vitamin E in human low-density lipoprotein: when and how this antioxidant becomes a pro-oxidant? Biochem J. 1992;288:341–4.

    Article  CAS  Google Scholar 

  32. Fuster MD, Lampi A-M, Hopia A, Kamal-Eldin A. Effects of α- and γ-tocopherols on the autooxidation of purified sunflower triacylglycerols. Lipids. 1998;33:715–22.

    Article  CAS  Google Scholar 

  33. Yanishlieva NV, Marinova EM. Inhibited oxidation of lipids I: complex estimation and comparison of the antioxidative properties of some natural and synthetic antioxidants. Fett-Lipid. 1992;94:374–9.

    Article  CAS  Google Scholar 

  34. Tavadyan LA, Khachoyan AA, Martoyan GA, Kamal-Eldin A. Numerical revelation of the kinetic significance of individual steps in the reaction mechanism of methyl linoleate peroxidation inhibited by α-tocopherol. Chem Phys Lipids. 2007;147:30–45.

    Article  CAS  Google Scholar 

  35. Mukai K, Noborio S, Nagaoka SI. Why is the order reversed? Peroxyl-scavenging activity and fats and oils protecting activity of vitamin E. In J Chem Kinet. 2005;37:605–10.

    Article  CAS  Google Scholar 

  36. Bowry VW, Stocker R. Tocopherol-mediated peroxidation: the prooxidant effect of vitamin E on the radical-initiated oxidation of human low density lipoprotein. J Am Chem Soc. 1993;115:6029–44.

    Article  CAS  Google Scholar 

  37. Yanishlieva NV, Marinova EM. Kinetic evaluation of the antioxidant activity in lipid oxidation. Chapter 4. In: Kamal-Eldin A, editor. Lipid oxidation pathways. Urbana: American Oil Chemist’s Society Publishing; 2003. p. 85–110.

    Google Scholar 

  38. Réblová Z. The effect of temperature on the antioxidant activity of tocopherols. Eur J Lipid Sci Technol. 2006;108:858–63.

    Article  Google Scholar 

  39. Ghnimi S, Budilarto E, Kamal-Eldin A. The new paradigm for lipid oxidation and insights to microencapsulation of omega-3 fatty acids. Comp Rev Food Sci Food Safety. 2017;16:1206–18.

    Article  CAS  Google Scholar 

  40. Porter WL, Kapsalis JG, Wetherby AM, Drolet AM, Black ED. A rationale for evaluation and selection of antioxidants for protection of ration items of different types. 1982 Conference paper, available at https://apps.dtic.mil/dtic/tr/fulltext/u2/a117476.pdf. Accessed 18 May 2018.

  41. Porter WL, Black ED, Drolet AM. Use of polyamide oxidative fluorescence test on lipid emulsions: contrast in relative effectiveness of antioxidants in bulk versus dispersed systems. J Agric Food Chem. 1989;37:615–24.

    Article  CAS  Google Scholar 

  42. Frankel E, Huang S, Kanner J, German J. Interfacial phenomena in the evaluation of antioxidants: bulk oils vs. emulsions. J Agric Food Chem. 1994;42:1054–9.

    Article  CAS  Google Scholar 

  43. Chaiyasit W. Role of association colloids in bulk oils on lipid oxidation. PhD Thesis, University of Massachusetts Amherst, USA; 2007.

    Google Scholar 

  44. Chaiyasit W, McClements DJ, Decker EA. The relationship between the physicochemical properties of antioxidants and their ability to inhibit lipid oxidation in bulk oil and oil-in-water emulsions. J Agric Food Chem. 2005;53:4982–8.

    Article  CAS  Google Scholar 

  45. Chaiyasit W, McClements DJ, Weiss J, Decker EA. Impact of surface-active compounds on physicochemical and oxidative properties of edible oil. J Agric Food Chem. 2008;56:550–6.

    Article  CAS  Google Scholar 

  46. Leermakers M. Statistical thermodynamics of association colloids: the equilibrium structure of micelles, vesicles, and bilayer membranes. PhD Thesis, University of Wageningen, The Netherlands. http://edepot.wur.nl/201851; 1988.

  47. Yoshida H, Yusin M, Ren I, Kuklenkamp J, Hirano T, Stolz A, Kaplowitz N. Identification, purification and immunochemical characterization of a tocopherol-binding protein in rat liver cytosol. J Lipid Res. 1992;33:343–50.

    CAS  PubMed  Google Scholar 

  48. Serbinova E, Kagan V, Han D, Packer L. Free radical recycling and intermembrane mobility in the antioxidation properties of alpha-tocopherol and alpha-tocotrienol. Free Radic Biol Med. 1991;10:263–75.

    Article  CAS  Google Scholar 

  49. Hamilton RJ, Kalu C, Mc Neill GP, Padley FB, Pierce JH. Effects of tocopherols, ascorbyl palmitate, and lecithin on autoxidation of fish oils. J Am Oil Chem Soc. 1998;75:813–22.

    Article  CAS  Google Scholar 

  50. Koga T, Terao J. Phospholipids increase radical-scavenging activity of vitamin E in a bulk oil model system. J Agric Food Chem. 1995;43:1450–4.

    Article  CAS  Google Scholar 

  51. Kortenska VD, Yanishlieva NV, Kasaikina OT, Totzeva IR, Boneva MI, Russina IF. Phenol antioxidant efficiency in various lipid substrates containing hydroxy compounds. Eur J Lipid Sci Technol. 2002;104:513–9.

    Article  CAS  Google Scholar 

  52. Elias RJ, Kellerby SS, Decker EA. Antioxidant activity of proteins and peptides. Crit Rev Food Sci Nutr. 2008;48:430–41.

    Article  CAS  Google Scholar 

  53. Udenigwe CC, Aluko RE. Chemometric analysis of the amino acid requirements of antioxidant food protein hydrolysates. Int J Mol Sci. 2011;12:3148–61.

    Article  CAS  Google Scholar 

  54. Amiri A, Memarpoor-Yazdi M, Shanbedi M, Eshghi H. Influence of different amino acid groups on the free radical scavenging capability of multi walled carbon nanotubes. J Biomed Mater Res Part A. 2013;101A:2219–28.

    Article  CAS  Google Scholar 

  55. Bakaltcheva I, Gyimah D, Reid T. Effects of alpha-tocopherol on platelets and the coagulation system. Platelets. 2001;12:389–94.

    Article  CAS  Google Scholar 

  56. Breyer I, Azzi A. Differential inhibition by alpha- and beta-tocopherol of human erythroleukemia cell adhesion: role of integrins. Free Radic Biol Med. 2001;30:1381–9.

    Article  CAS  Google Scholar 

  57. Codex. Codex standard for named vegetable oils, CODEX STAN 210; 1999.

    Google Scholar 

  58. Cunha SC, Amaral JS, Ferandes JO, Olivera MBPP. Quantification of tocopherols and tocotrienols in Portuguese olive oils using HPLC with three different detection systems. J Agric Food Chem. 2006;54:3351–6.

    Article  CAS  Google Scholar 

  59. Boran G, Karacam H, Boran M. Changes in the quality of fish oils due to storage temperature and time. Food Chem. 2006;98:693–8.

    Article  CAS  Google Scholar 

  60. Nwosu CV, Boyd LC, Sheldon B. Effect of fatty acid composition of phospholipids on their antioxidant properties and activity index. J Am Oil Chem Soc. 1997;74:293–7.

    Article  CAS  Google Scholar 

  61. Hildebrand DH, Jerao J, Kito M. Phospholipids plus tocopherols increase soybean oil stability. J Am Oil Chem Soc. 1984;61:552–5.

    Article  CAS  Google Scholar 

  62. Hudson BJF, Ghavami M. Phospholipids as antioxidant synergists for tocopherols in the autoxidation of edible oils. Lebensm -Wiss u -Technol. 1984;17:191–4.

    CAS  Google Scholar 

  63. Laouini A, Andrieu V, Vecellio L, Fessi H, Charcosset C. Characterization of different vitamin E carriers intended for pulmonary drug delivery. Int J Pharm. 2014;471:385–90.

    Article  CAS  Google Scholar 

  64. Laouini A, Fessi H, Charcosset C. Membrane emulsification: A promising alternative for vitamin E encapsulation within nano-emulsion. J Membr Sci. 2012;423–424:85–96.

    Article  Google Scholar 

  65. Martiel I, Sagalowicz L, Mezzenga R. Phospholipid-based nonlamellar mesophases for delivery systems: bridging the gap between empirical and rational design. Adv Colloid Interf Sci. 2014;209:127–43.

    Article  CAS  Google Scholar 

  66. Atkinson J, Harroun T, Wassall SR, Stillwell W, Katsaras J. The location and behavior of alpha-tocopherol in membranes. Mol Nutr Food Res. 2010;54:641–51.

    Article  CAS  Google Scholar 

  67. Evstigneeva RP, Volkov IM, Chudinova VV. Vitamin E as a universal antioxidant and stabilizer of biological membranes. Membr Cell Biol. 1998;12:151–72.

    CAS  PubMed  Google Scholar 

  68. Wang X, Quinn PJ. The location and function of vitamin E in membranes (review). Mol Membr Biol. 2000;17:143–56.

    Article  Google Scholar 

  69. Niki E. Interaction of ascorbate and alpha-tocopherol. Ann N Y Acad Sci. 1987;498:186–99.

    Article  CAS  Google Scholar 

  70. Atkinson J, Epand RF, Epand RM. Tocopherols and tocotrienols in membranes: a critical review. Free Radic Biol Med. 2008;44:739–64.

    Article  CAS  Google Scholar 

  71. Catalá A. Lipid peroxidation modifies the picture of membranes from the “fluid mosaic model” to the “lipid whisker model”. Biochimie. 2012;94:101–9.

    Article  Google Scholar 

  72. Greenberg ME, Li XM, Gugiu BG, Gu X, Qin J, Salomon RG, Hazen SL. The lipid whisker model of the structure of oxidized cell membranes. J Biol Chem. 2008;283:2385–96.

    Article  CAS  Google Scholar 

  73. Cimen MY. Free radical metabolism in human erythrocytes. Clin Chim Acta. 2008;390:1–11.

    Article  CAS  Google Scholar 

  74. Nikoliæ-Kokiæ A, Blagojeviæ D, Spasiæ MB. Complexity of free radical metabolism in human erythrocytes. J Med Biochem. 2010;29:189–95.

    Article  Google Scholar 

  75. Sun Y, Ma A, Li Y, Han X, Wang Q, Liang H. Vitamin E supplementation protects erythrocyte membranes from oxidative stress in healthy Chinese middle-aged and elderly people. Nutr Res. 2012;32:328–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afaf Kamal-Eldin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamal-Eldin, A. (2019). Antioxidative Activity of Vitamin E. In: Weber, P., Birringer, M., Blumberg, J., Eggersdorfer, M., Frank, J. (eds) Vitamin E in Human Health. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-030-05315-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05315-4_3

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-030-05314-7

  • Online ISBN: 978-3-030-05315-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics