Skip to main content
Log in

Computational study of electronic properties of X-doped hexagonal boron nitride (h-BN): X = (Li, Be, Al, C, Si)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structural and electronic properties of h-BN sheet implanted with X atoms (X = lithium (Li), beryllium (Be), aluminum (Al), carbon (C), and silicon (Si)) have been investigated to tune its band gap to amend its insulating behavior toward semiconducting material employing density functional theory (DFT). It has been observed that on replacing nitrogen or boron (N/B) atom with impurity atom, several impurity levels appear in band gap dividing big gap into small energy gaps, albeit to a different extent, depending upon the dopant element and substitutional site. The lowest value of band gap falls as low as 2.27 eV as compared to 4.63 eV of pristine h-BN in addition to the appearance of states at the Fermi level. Additionally; geometrical, interaction of foreign elements with the host material, and stability issues are discussed. These results are affable for its usage in transistor-based devices and to explore its new applications in high-power electronic and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data was calculated by Qurat ul Ain Asif and Akhtar Hussain.

Code availability

VASP code was provided by Akhtar Hussain.

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2016) Electric field effect in atomically thin carbon films. 306(5696):666–669

  2. Cui X, Xiao J, Wu Y, Du P, Si R, Yang H, Tian H, Li J, Zhang W, Deng D, Bao X (2016) A graphene composite material with single cobalt active sites: a highly efficient counter electrode for dye-sensitized solar cells. Angewandte Chemie - International Edition 55(23):6708–6712. https://doi.org/10.1002/anie.201602097

  3. Asif Q ul A, Hussain A, Rafique HM, Tayyab M (2020) Computational study of Be-doped hexagonal boron nitride (h-BN): structural and electronic properties. Comput Condens Matter 23. https://doi.org/10.1016/j.cocom.2020.e00474

  4. Chang CW, Okawa D, Majumdar A, Zettl A (2006) Solid-state thermal rectifier. Science 314(5802):1121–1124. https://doi.org/10.1126/science.1132898

  5. Golberg D, Costa PMFJ, Lourie O, Mitome M, Bai X, Kurashima K, Zhi C, Tang C, Bando Y (2007) Direct force measurements and kinking under elastic deformation of individual multiwalled boron nitride nanotubes. Nano Lett 7(7):2146–2151. https://doi.org/10.1021/nl070863r

  6. Kovtyukhova NI, Wang Y, Lv R, Terrones M, Crespi VH, Mallouk TE (2013) Reversible intercalation of hexagonal boron nitride with Brønsted acids. J Am Chem Soc 135:8372–8381. https://doi.org/10.1021/ja403197h

    Article  CAS  PubMed  Google Scholar 

  7. Lin Y, Williams TV, Connell JW (2010) Soluble, exfoliated hexagonal boron nitride nanosheets. J Phys Chem Lett 1(1):277–283. https://doi.org/10.1021/jz9002108

  8. Lin Y, Williams TV, Xu TB, Cao W, Elsayed-Ali HE, Connell JW (2011) Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water. J Phys Chem C 115(6):2679–2685. https://doi.org/10.1021/jp110985w

  9. Cui Z, Oyer AJ, Glover AJ, Schniepp HC, Adamson DH (2014) Large scale thermal exfoliation and functionalization of boron nitride. Small 10(12):2352–2355. https://doi.org/10.1002/smll.201303236

  10. Li X, Hao X, Zhao M, Wu Y, Yang J, Tian Y, Qian G (2013) Exfoliation of hexagonal boron nitride by molten hydroxides. Adv Mater 25(15):2200–2204. https://doi.org/10.1002/adma.201204031

  11. Sainsbury T, Satti A, May P, Wang Z, McGovern I, Gun’ko YK, Coleman J (2012) Oxygen radical functionalization of boron nitride nanosheets. J Am Chem Soc. https://doi.org/10.1021/ja3080665

    Article  PubMed  Google Scholar 

  12. Lei W, Portehault D, Liu D, Qin S, Chen Y (2013) Porous boron nitride nanosheets for effective water cleaning. Nat Commun 4. https://doi.org/10.1038/ncomms2818

  13. Maiti UN, Lee WJ, Lee JM, Oh Y, Kim JY, Kim JE, Shim J, Han TH, Kim SO (2014) 25th anniversary article: chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices. Adv Mater. https://doi.org/10.1002/adma.201303265

  14. Kaewmaraya T, Srepusharawoot P, Hussian T, Amornkitbamrung V (2017) Electronic properties of h-BCN–blue phosphorene van der Waals heterostructures. ChemPhysChem 19(5):612–618. https://doi.org/10.1002/cphc.201701150  

  15. Kim M, Moon SW, Kim G, Yoon SI, Kim K, Min SK, Shin HS (2020) Effect of Pt crystal surface on hydrogenation of monolayer h-BN and its conversion to graphene. Chem Mater 32:4584–4590. https://doi.org/10.1021/acs.chemmater.0c00736

    Article  CAS  Google Scholar 

  16. Späth F, Steinhauer J, Düll F, Bauer U, Bachmann P, Steinrück HP, Papp C (2020) Reaction of hydrogen and oxygen on h-BN. J Phys Chem C 124:18141–18146. https://doi.org/10.1021/acs.jpcc.0c05299

    Article  CAS  Google Scholar 

  17. Sun C, Ma F, Cai L, Wang A, Wu Y, Zhao M, Yan W, Hao X (2017) Metal-free ternary BCN nanosheets with synergetic effect of band gap engineering and magnetic properties. Sci Rep 7(1). https://doi.org/10.1038/s41598-017-07143-6 

  18. Gautam C, Tiwary CS, Jose S, Brunetto G, Ozden S, Vinod S, Raghavan P, Biradar S, Galvao DS, Ajayan PM (2015) Synthesis of low-density, carbon-doped, porous hexagonal boron nitride solids. ACS Nano 9:12088–12095. https://doi.org/10.1021/acsnano.5b05847

    Article  CAS  PubMed  Google Scholar 

  19. Sagynbaeva M, Hussain T, Panigrahi P, Johansson B, Ahuja R (2015) Complementing the adsorption energies of CO2, H2S and NO2 to h-BN sheets by doping with carbon. EPL 109(5). https://doi.org/10.1209/0295-5075/109/57008

  20. Singh RS, Tay RY, Chow WL, Tsang SH, Mallick G, Teo EHT (2014) Band gap effects of hexagonal boron nitride using oxygen plasma. Appl Phys Lett 104:163101. https://doi.org/10.1063/1.4872318

    Article  CAS  Google Scholar 

  21. Zhao G, Wang A, He W, Xing Y, Xu X (2019) 2D new nonmetal photocatalyst of sulfur-doped h-BN nanosheeets with high photocatalytic activity. Adv Mater Interfaces 6(7). https://doi.org/10.1002/admi.201900062

  22. Kökten H, Erkoç Ş (2014) A study on Si and P doped h-BN sheets: DFT calculations, Turkish. J Phys 38:369–374. https://doi.org/10.3906/fiz-1406-17

    Article  CAS  Google Scholar 

  23. Majety S, Doan TC, Li J, Lin JY, Jiang HX (2013) Electrical transport properties of Si-doped hexagonal boron nitride epilayers. AIP Adv 3:122116. https://doi.org/10.1063/1.4860949

    Article  CAS  Google Scholar 

  24. Sun F, Hao Z, Liu G, Wu C, Lu S, Huang S, Liu C, Hong Q, Chen X, Cai D, Kang J (2018) P-Type conductivity of hexagonal boron nitride as a dielectrically tunable monolayer: modulation doping with magnesium. Nanoscale 10:4361–4369. https://doi.org/10.1039/c7nr08035b

    Article  CAS  PubMed  Google Scholar 

  25. Hussain A, Ullah S, Farhan MA (2016) Fine tuning the band-gap of graphene by atomic and molecular doping: a density functional theory study. RSC Adv 6:55990–56003. https://doi.org/10.1039/c6ra04782c

    Article  CAS  Google Scholar 

  26. Hussain A, Tayyab M (2020) Effect of Cu concentration and dopant site on the band gap of MoS2: A DFT study. Comput Condens Matter 24. https://doi.org/10.1016/j.cocom.2020.e00494

  27. Tarasov A, Zhang S, Tsai MY, Campbell PM, Graham S, Barlow S, Marder SR, Vogel EM (2015) Controlled doping of large-area trilayer MoS2 with molecular reductants and oxidants. Adv Mater 27:1175–1181. https://doi.org/10.1002/adma.201404578

    Article  CAS  PubMed  Google Scholar 

  28. Ristein J (2006) Surface transfer doping of semiconductors. Science 313:1057–1058. https://doi.org/10.1126/science.1127589

    Article  CAS  PubMed  Google Scholar 

  29. Liu H, Liu Y, Zhu D (2011) Chemical doping of graphene. J Mater Chem 21:3335–3345. https://doi.org/10.1039/c0jm02922j

    Article  CAS  Google Scholar 

  30. Chen W, Qi D, Gao X, Wee ATS (2009) Surface transfer doping of semiconductors. Prog Surf Sci 84:279–321. https://doi.org/10.1016/j.progsurf.2009.06.002

    Article  CAS  Google Scholar 

  31. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metalamorphous- semiconductor transition in germanium. Phys Rev B 49:14251–14269. https://doi.org/10.1103/PhysRevB.49.14251

    Article  CAS  Google Scholar 

  32. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953

    Article  Google Scholar 

  33. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  PubMed  Google Scholar 

  34. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  35. Ullah S, Hussain A, Sato F (2017) Rectangular and hexagonal doping of graphene with B, N, and O: a DFT study. RSC Adv 7:16064–16068. https://doi.org/10.1039/c6ra28837e

    Article  CAS  Google Scholar 

  36. Asif Q ul A, Hussain A, Nabi A, Tayyab M, Rafique HM (2021) Computational study of X-doped hexagonal boron nitride (h-BN): structural and electronic properties (X = P, S, O, F, Cl). J Mol Model 27(2). https://doi.org/10.1007/s00894-020-04659-z

  37. Liu YJ, Gao B, Xu D, Wang HM, Zhao JX (2014) Theoretical study on Si-doped hexagonal boron nitride (h-BN) sheet: electronic, magnetic properties, and reactivity. Phys Lett Sect A Gen At Solid State Phys 378:2989–2994. https://doi.org/10.1016/j.physleta.2014.07.053

    Article  CAS  Google Scholar 

  38. Paszkowicz W, Pelka JB, Knapp M, Szyszko T, Podsiadlo S (2002) Lattice parameters and anisotropic thermal expansion of hexagonal boron nitride in the 10–297.5 K temperature range. Appl Phys A Mater Sci Process. https://doi.org/10.1007/s003390100999

    Article  Google Scholar 

  39. Kim D-H, Kim H-S, Song MW, Lee S, Lee SY (2017) Geometric and electronic structures of monolayer hexagonal boron nitride with multi-vacancy. Nano Converg. https://doi.org/10.1186/s40580-017-0107-0

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhou J, Wang Q, Sun Q, Jena P (2010) Electronic and magnetic properties of a BN sheet decorated with hydrogen and fluorine. Phys Rev B - Condens Matter Mater Phys. https://doi.org/10.1103/PhysRevB.81.085442

    Article  Google Scholar 

  41. Zhou YG, Xiao-Dong J, Wang ZG, Xiao HY, Gao F, Zu XT (2010) Electronic and magnetic properties of metal-doped BN sheet: a first-principles study. Phys Chem Chem Phys. https://doi.org/10.1039/b918183k

    Article  PubMed  PubMed Central  Google Scholar 

  42. Naqvi SR, Rao GS, Luo W, Ahuja R, Hussain T (2017) Hexagonal boron nitride (h-BN) sheets decorated with OLi, ONa, and Li2F molecules for enhanced energy storage. ChemPhysChem 18:513–518. https://doi.org/10.1002/cphc.201601063

    Article  CAS  PubMed  Google Scholar 

  43. Momma K, Izumi F (2008) VESTA: A three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr 41:653–658. https://doi.org/10.1107/S0021889808012016

    Article  CAS  Google Scholar 

  44. Marezio M, Remeika JP, Dernier PD (1970) The crystal chemistry of the rare earth orthoferrites, Acta Crystallogr. Sect B Struct Crystallogr Cryst Chem 26:2008–2022. https://doi.org/10.1107/s0567740870005319

    Article  CAS  Google Scholar 

  45. Topsakal M, Aktürk E, Ciraci S (2009) First-principles study of two- and one-dimensional honeycomb structures of boron nitride. Phys Rev B - Condens Matter Mater Phys. https://doi.org/10.1103/PhysRevB.79.115442

    Article  Google Scholar 

  46. He B, Zhang WJ, Yao ZQ, Chong YM, Yang Y, Ye Q, Pan XJ, Zapien JA, Bello I, Lee ST, Gerhards I, Zutz H, Hofsäss H (2009) P -type conduction in beryllium-implanted hexagonal boron nitride films. Appl Phys Lett 95:2–5. https://doi.org/10.1063/1.3276065

    Article  CAS  Google Scholar 

  47. Yu S, Li L, Lai Z, Hao J, Zhang K (2017) A coupling effects of vacancy and Al (Ga, In) dopant on electronic structures of hexagonal boron nitride monolayer. Mater Res Express. https://doi.org/10.1088/2053-1591/aa93bf

    Article  Google Scholar 

  48. Fujimoto Y (2017) Formation and physical properties of h-BN atomic layers: a first-principles density-functional study. Adv Mater Sci Eng. https://doi.org/10.1155/2017/2676432

  49. Mapasha RE, Igumbor E, Chett N (2016) A hybrid density functional study of silicon and phosphorus doped hexagonal boron nitride monolayer. J Phys Conf Ser 759:012042. https://doi.org/10.1088/1742-6596/759/1/012042

  50. Ullah S, Hussain A, Syed WA, Saqlain MA, Ahmad I, Leenaerts O, Karim A (2015) Band-gap tuning of graphene by Be doping and Be, B co-doping: a DFT study. RSC Adv 5:55762–55773. https://doi.org/10.1039/c5ra08061d

    Article  CAS  Google Scholar 

  51. Zhang L, Gao YC (2017) Electronic structures, magnetic properties and half-metallicity in the Heusler alloy Hf2VAl, Chinese. J Phys 55:1466–1472. https://doi.org/10.1016/j.cjph.2017.04.012

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the substantial support by PINSTECH; Government College University, Faisalabad, Punjab, Pakistan, and the University of the Punjab, Lahore, Pakistan. Special thanks to Haris Akram Bhatti for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Qurat ul Ain Asif gave the main idea, drafted the manuscript, prepared, and calculated the data; Akhtar Hussain provided the VASP code, calculated the data, and reviewed the manuscript carefully; Muhammad Kashif and Muhammad Tayyab helped in plotting of results; Hafiz Muhammad Rafique provided guidance and helped in defining the results.

Corresponding authors

Correspondence to Qurat ul Ain Asif or Akhtar Hussain.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asif, Q.u.A., Hussain, A., Kashif, M. et al. Computational study of electronic properties of X-doped hexagonal boron nitride (h-BN): X = (Li, Be, Al, C, Si). J Mol Model 27, 319 (2021). https://doi.org/10.1007/s00894-021-04938-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04938-3

Keywords

Navigation