Skip to main content
Log in

Evaluation of hydrogen bonds formation in the selected rare sugars based on 6-31G* and 6–311 +  + G(d,p) basis sets

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Rare sugars are monosaccharides with tremendous potential for applications in pharmaceutical, cosmetics, nutraceutical, and flavors industries. The four rare sugars, including gulose, allose, altrose, and talose, are stereoisomers that are different in the hydroxyl group orientation (axial or equatorial) on the C2-4 atoms. The basis sets effect in evaluation of the possibility intramolecular hydrogen bonding (H-bonds) in the selected rare sugars was studied from 6-31G* to 6–311 ++ G(d,p) basis sets using DFT, AIM, and NBO methods. The results show that the selected rare sugars are more stable at 6–311 ++ G(d,p) basis sets compared to 6-31G* because their electronic energies were reduced between 158 and 164 (kcal.mol−1). The overall effect of basis set enhancement is to decrease H-bond energies in the range of  1.25 to 2.51 (kcal.mol−1) and stabilization energies between 2 and 5 (kcal.mol−1) in the selected rare sugars at the DFT level of theory. The intramolecular H-bond distances, H-bond energies obtained from the AIM analysis, and also the second-order stabilization energies obtained from the NBO analysis were fluctuated largely depending on the basis set. In summary, it was found that the use of 6–311 ++ G(d,p) basis set to be more efficient results in rare sugars geometry than the 6-31G* basis set.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Spartan 14 –Gaussian 09.

References

  1. Mu W et al (2012) Recent advances on applications and biotechnological production of D-psicose. Appl Microbiol Biotechnol 94:1461–1467

    CAS  PubMed  Google Scholar 

  2. Hoshikawa H et al (2011) Enhancement of the radiation effects by D-allose in head and neck cancer cells. Cancer Lett 306:60–66

    CAS  PubMed  Google Scholar 

  3. Granström TB, Izumori K, Leisola M (2007) A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Appl Microbiol Biotechnol 74(2):273–276. https://doi.org/10.1007/s00253-006-0760-4

    Article  CAS  PubMed  Google Scholar 

  4. Levin GV et al (1995) Sugar substitutes: their energy values, bulk characteristics, and potential health benefits. Am J Clin Nutr 62:1161S-1168S

    CAS  PubMed  Google Scholar 

  5. Tang S-Y (2012) Rare sugars: applications and enzymatic production. J Biocatal Biotransform 1:2. https://doi.org/10.4172/2324-9099.1000e105

  6. Robyt J (1998) Essentials of carbohydrate chemistry. Springer, Berlin

    Google Scholar 

  7. Kajikawa T et al (2010) Reactivity of rare sugar D-allose during glycation of human serum albumin. J Anal Bio-Sci 33(3)227–236

  8. Sazalee SA, Ahmad N, Hashim R (2017) Investigation of self-assembly properties and the effect of tween series co-surfactants on the stability of nonionic branched-chain glycolipid hexosomes. Colloid Surf A 529:210–221

    CAS  Google Scholar 

  9. Panico R, Powell W, Richer J (1993) A guide to IUPAC nomenclature of organic compounds: recommendations 1993. International Union of Pure Applied Chemistry Commission on the Nomenclature of Organic Chemistry. Blackwell Scientific, Oxford

    Google Scholar 

  10. Lomas JS (2018) Intramolecular O-H⋯O and C-H⋯O hydrogen bond cooperativity in D-glucopyranose and D-galactopyranose—A DFT/GIAO, QTAIM/IQA, and NCI approach. Mag Reson Chem 56(8):748–766

    CAS  Google Scholar 

  11. Hermansson M, von Heijne G (2003) Inter-helical hydrogen bond formation during membrane protein integration into the ER membrane. J Mol Bio 334(4):803–809

    CAS  Google Scholar 

  12. Arneson LS et al (2001) Hydrogen bond integrity between MHC class II molecules and bound peptide determines the intracellular fate of MHC class II molecules. J Immunol 167(12):6939–6946

    CAS  PubMed  Google Scholar 

  13. Lipinski CA et al (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1PII of original article: S0169-409X(96)00423-1. The article was originally published in Adv Drug Deliver Rev 23 (1997) 3–25.1. Ad Drug Deliv Rev 46(1):3–26

    CAS  Google Scholar 

  14. Jeffrey GA, Saenger W (1994) Hydrogen Bonding in Biological Structures. Springer-Verlag, Heidelberg

    Google Scholar 

  15. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biology and chemistry. Springer-Verlag, Berlin

    Google Scholar 

  16. Emsley J (1980) Very strong hydrogen bonding. Chem Soc Rev 9(1):91–124

    CAS  Google Scholar 

  17. Claesson PM et al (2006) Short-range interactions between non-ionic surfactant layers. Phys Chem Chem Phys 8(47):5501–5514

    CAS  PubMed  Google Scholar 

  18. Larson J, McMahon T (1984) Gas-phase bihalide and pseudobihalide ions. An ion cyclotron resonance determination of hydrogen bond energies in XHY-species (X, Y= F, Cl, Br, CN). Inorg Chem 23(14):2029–2033

    CAS  Google Scholar 

  19. MosapourKotena Z, Behjatmanesh–Ardakani R, Hashim R (2014) AIM and NBO analyses on hydrogen bonds formation in sugar-based surfactants (α/β-d-mannose and n-octyl-α/β-d-mannopyranoside): a density functional theory study. Liq Cryst 41(6):784–792

    CAS  Google Scholar 

  20. Kotena ZM, Mohamad SB (2017) Bifurcated hydrogen bond in rare sugar by computational study. Mol Cryst Liq Cryst 646(1):31–40

    CAS  Google Scholar 

  21. Kotena ZM, Fattahi A (2020) Influence of H‐bonds on acidity of deoxy‐hexose sugars. J Phys Org Chem 33(10)1–17

  22. Kotena ZM, Fattahi A (2020) Comparison of acidity and metal ion affinity of D-Glucosamine and N-acetyl-D-glucosamine, a DFT study. J Mol Graph Model 98:107612

    CAS  PubMed  Google Scholar 

  23. Lomas JS, Joubert L (2017) On the importance of intramolecular hydrogen bond cooperativity in d-glucose – an NMR and QTAIM approach. Mag Reson Chem 55(10):893–901

    CAS  Google Scholar 

  24. Berezin KV, Nechaev VV (2004) Comparison of theoretical methods and basis sets for ab initio and DFT calculations of the structure and frequencies of normal vibrations of polyatomic molecules. J Appl Spectrosc 71:164–172

    CAS  Google Scholar 

  25. Del Bene JE (1987) Basis set and correlation effects on computed positive ion hydrogen bond energies of the complexes A H , A H , + 1 + 1...AH, = N H 3 , OHz, and F H. J Comput Chem 8(6):810–815

    Google Scholar 

  26. Bader RF (1991) A quantum theory of molecular structure and its applications. Chem Rev 91(5):893–928

    CAS  Google Scholar 

  27. Espinosa E et al (1999) Topological analysis of the electron density in hydrogen bonds. Acta Crystalloger B 55(4):563–572

    CAS  Google Scholar 

  28. Weinhold F (1997) Nature of H-bonding in clusters, liquids, and enzymes: an ab initio, natural bond orbital perspective. J Mol Struct 398:181–197

    Google Scholar 

  29. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–926

    CAS  Google Scholar 

  30. Spartan ‘14' (2014) Wavefunction, Inc., Irvine, CA. V1.1.4 26

  31. Contreras CS et al (2012) On the path to glycan conformer identification: gas-phase study of the anomers of methyl glycosides of N-Acetyl-d-glucosamine and N-acetyl-d-galactosamine. Int J Mass Spectrom 330–332:285–294

    Google Scholar 

  32. Frisch MJ, Trucks GWT. Schlegel HB et al (2009) Gaussian 09 ,Revision A. 02. Wallingford CT

  33. Appell M, Willett JL, Momany FA (2005) DFT study of α- and β-d-mannopyranose at the B3LYP/6-311++G** level. Carbohyd Res 340(3):459–468

    CAS  Google Scholar 

  34. Momany FA et al (2005) B3LYP/6-311++G** geometry-optimization study of pentahydrates of α- and β-d-glucopyranose. Carbohyd Res 340(9):1638–1655

    CAS  Google Scholar 

  35. Momany FA et al (2006) DFT study of α- and β-d-galactopyranose at the B3LYP/6-311++G** level of theory. Carbohyd Res 341(4):525–537

    CAS  Google Scholar 

  36. Popelier PL, Hall P (2000) Atoms in molecules: an introduction. Prentice Hall, Hoboken

    Google Scholar 

  37. Bader R (1995) Atoms in molecules. A quantum theory. Oxford University Press, Oxford

    Google Scholar 

  38. Biegler-König F et al (2002) AIM2000. University of Applied Sciences, Bielefeld

    Google Scholar 

  39. Glendening EM, Reed A, Carpenter J, Winhold F, (2003)NBO 3. 1

  40. Mosapour Kotena Z et al (2013) Hydrogen bonds in galactopyranoside and glycopyranoside: a density functional theory. J Mol Model 19(2):589–599

    CAS  PubMed  Google Scholar 

  41. Kawahara S-I, Uchimaru T (2000) Basis set effect on hydrogen bond stabilization energy estimation of the Watson-Crick type nucleic acid base pairs using medium-size basis sets: single point MP2 evaluations at the HF optimized structures. Phys Chem Chem Phys 2(13):2869–2872

    CAS  Google Scholar 

  42. Zaharim WN et al (2020) Basis set effects in density functional theory calculation of muoniated cytosine nucleobase. Key Eng Mater 860:282–287

    Google Scholar 

  43. Popelier P (1998) Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A 102(10):1873–1878

    CAS  Google Scholar 

  44. Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285(3–4):170–173

    CAS  Google Scholar 

  45. Popelier P, Bader R (1992) The existence of an intramolecular C- H... O hydrogen bond in creatine and carbamoyl sarcosine. Chem Phys Lett 189(6):542–548

    CAS  Google Scholar 

  46. Del Bene JE (1987) Basis set and correlation effects on computed positive ion hydrogen bond energies of the complexes AHn · AHn + 1+1: AHn = NH3, OH2, and FH. J Comput Chem 8(6):810–815

    Google Scholar 

  47. Momany FA, Willett JL (2000) Computational studies on carbohydrates: I. Density functional ab initio geometry optimization on maltose conformations. J Comput Chem 21(13):1204–1219

    CAS  Google Scholar 

  48. Strati GL, Willett JL, Momany FA (2002) Ab initio computational study of beta-cellobiose conformers using B3LYP/6-311++G**. Carbohyd res 337(20):1833–1849

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Zahrabatoul Mosapour Kotena, Mozhan Razi, and Sara Ahmadi. The first draft of the manuscript was written by Zahrabatoul Mosapour Kotena, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zahrabatoul Mosapour Kotena.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosapour Kotena, Z., Razi, M. & Ahmadi, S. Evaluation of hydrogen bonds formation in the selected rare sugars based on 6-31G* and 6–311 +  + G(d,p) basis sets. J Mol Model 27, 315 (2021). https://doi.org/10.1007/s00894-021-04916-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04916-9

Keywords

Navigation