Skip to main content
Log in

Density functional study on formic acid decomposition on Pd(111) surface: a revisit and comparison with other density functional methods

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The mechanism of formic acid decomposition on the Pd(111) surface has been investigated by several theoretical methods in previous studies, including PBE and PW91. These results indicated that the mechanism is different from different methods, and even by using the same method (i.e., PBE), the mechanism is also different. In this study, we have revisited the formic acid decomposition on Pd(111) surface by using another density functional RPBE and by including van der Waals interaction which is neglected in the previous studies. Our results showed that the formic acid is decomposed via O–H bond cleavage to form bi-HCOO*, and the most favorable pathway is HCOOH* → bi-HCOO* + H* → CO2* + 2H*. The energy barrier is 0.55 eV at the rate-determining step. This conclusion is consistent with one of the PBE study. This demonstrated that computational methods have a great influence on the reaction mechanism, and care should be taken in selecting the appropriate computational methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

VASP software package.

References

  1. Aricò A, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377. https://doi.org/10.1038/nmat1368

    Article  CAS  PubMed  Google Scholar 

  2. Johnson TC, Morris DJ, Wills M (2010) Hydrogen generation from formic acid and alcohols using homogeneous catalysts. Chem Soc Rev 39:81–88. https://doi.org/10.1039/B904495G

    Article  CAS  PubMed  Google Scholar 

  3. Rice C, Ha S, Masel RI, Waszczuk P, Wieckowski A, Barnard T (2002) Direct formic acid fuel cells. J Power Sources 111:83–89. https://doi.org/10.1016/S0378-7753(02)00271-9

    Article  CAS  Google Scholar 

  4. Wang X, Hu JM, Hsing IM (2004) Electrochemical investigation of formic acid electro-oxidation and its crossover through a Nafion membrane. J Eletroanal Chem 562:73–80. https://doi.org/10.1016/j.jelechem.2003.08.010

    Article  CAS  Google Scholar 

  5. Zhu Y, Ha SY, Masel RI (2004) High power density direct formic acid fuel cells. J Power Sources 130:8–14. https://doi.org/10.1016/j.jpowsour.2003.11.051

    Article  CAS  Google Scholar 

  6. Yu XW, Pickup PG (2008) Recent advances in direct formic acid fuel cell (DFAFC). J Power Sources 182:124–132. https://doi.org/10.1016/j.jpowsour.2008.03.075

    Article  CAS  Google Scholar 

  7. Ozensoy E, Min BK, Santra AK, Goodman DW (2004) CO dissociation at elevated pressures on supported Pd nanoclusters. J Phys Chem B 108:4351–4357. https://doi.org/10.1021/jp030928o

    Article  CAS  Google Scholar 

  8. Davis JL, Barteau MA (1991) Reactions of carboxylic acids on the Pd(111)-(2×2)O surface: multiple roles of surface oxygen atoms. Surf Sci 256:50–66. https://doi.org/10.1016/0039-6028(91)91199-8

    Article  CAS  Google Scholar 

  9. Patra S, Viswanath B, Barai K, Ravishankar N, Munichandraiah N (2010) High-surface step density on dendritic Pd leads to exceptional catalytic activity for formic acid oxidation. ACS Appl Mater Interfaces 2:2965–2969. https://doi.org/10.1021/am100647u

    Article  CAS  PubMed  Google Scholar 

  10. Mori K, Dojo M, Yamashita H (2013) Pd and Pd-Ag nanoparticles within a macroreticular basic resin: an efficient catalyst for hydrogen production from formic acid decomposition. ACS Catal 3:1114–1119. https://doi.org/10.1021/cs400148n

    Article  CAS  Google Scholar 

  11. Lv Q, Meng Q, Liu W, Sun N, Jiang K, Ma L et al (2018) Pd-PdO interface as active site for HCOOH selective dehydrogenation at ambient condition. J Phys Chem C 122:2081–2088. https://doi.org/10.1021/acs.jpcc.7b08105

    Article  CAS  Google Scholar 

  12. Karakurt B, Kocak Y, Ozensoy E (2019) Enhancement of formic acid dehydrogenation selectivity of Pd(111) single crystal model catalyst surface via Brønsted bases. J Phys Chem C 123:28777–28788. https://doi.org/10.1021/acs.jpcc.9b08707

    Article  CAS  Google Scholar 

  13. Luo Q, Feng G, Beller M, Jiao H (2012) Formic acid dehydrogenation on Ni(111) and comparison with Pd(111) and Pt(111). J Phys Chem C 116:4149–4156. https://doi.org/10.1021/jp209998r

    Article  CAS  Google Scholar 

  14. Zhang R, Liu H, Wang B, Ling L (2012) Insights into the preference of CO2 formation from HCOOH decomposition on Pd surface: a theoretical study. J Phys Chem C 116:22266–22280. https://doi.org/10.1021/jp211900z

    Article  CAS  Google Scholar 

  15. Wang Y, Qi Y, Zhang D, Liu C (2014) New insight into the decomposition mechanism of formic acid on Pd(111): competing formation of CO2 and CO. J Phys Chem C 118:2067–2076. https://doi.org/10.1021/jp410742p

    Article  CAS  Google Scholar 

  16. Herron JA, Scaranto J, Ferrin P, Li S, Mavrikakis M (2014) Trends in formic acid decomposition on model transition metal surfaces: a density functional theory study. ACS Catal 4:4434–4445. https://doi.org/10.1021/cs500737p

    Article  CAS  Google Scholar 

  17. He F, Li K, Xie G, Wang Y, Jiao M, Tang H, Wu ZJ (2016) Understanding the enhanced catalytic activity of Cu1@Pd3(111) in formic acid dissociation, a theoretical perspective. J Power Sources 316:8–16. https://doi.org/10.1016/j.jpowsour.2016.03.062

    Article  CAS  Google Scholar 

  18. Chen BWJ, Mavirkakis M (2020) Formic acid: a hydrogen-bonding cocatalyst for formate decomposition. ACS Catal 10:10812–10825. https://doi.org/10.1021/acscatal.0c02902

    Article  CAS  Google Scholar 

  19. Wang JY, Zhang HX, Jiang K, Cai WB (2011) From HCOOH to CO at Pd electrodes: a surface-enhanced infrared spectroscopy study. J Am Chem Soc 133:14876–14879. https://doi.org/10.1021/ja205747j

    Article  CAS  PubMed  Google Scholar 

  20. Bulushev DA, Beloshapkin S, Ross JRH (2010) Hydrogen from formic acid decomposition over Pd and Au catalysts. Catal Today 154:7–12. https://doi.org/10.1016/j.cattod.2010.03.050

    Article  CAS  Google Scholar 

  21. He N, Li ZH (2016) Palladium-atom catalyzed formic acid decomposition and the switch of reaction mechanism with temperature. Phys Chem Chem Phys 18:10005–10017. https://doi.org/10.1039/C6CP00186F

    Article  CAS  PubMed  Google Scholar 

  22. Yang L, Li G, Chang J, Ge J, Liu C, Vladdimir F, Wang G, Jin Z, XingW, (2020) Sea urchin-like Aucore@Pdshell electrocatalysts with high FAOR performance: Coefficient of lattice strain and electrochemical surface area. Appl Catal B 260:118200. https://doi.org/10.1016/j.apcatb.2019.118200

    Article  CAS  Google Scholar 

  23. Tedsree K, Li T, Jones S, Chan CWA, Yu KMK, Bagot PAJ et al (2011) Hydrogen production from formic acid decomposition at room temperature using an Ag-Pd core-shell nanocatalyst. Nat Nanotechnol 6:302–307. https://doi.org/10.1038/nnano.2011.42

    Article  CAS  PubMed  Google Scholar 

  24. Yang M, Wang B, Li Z, Ling L, Zhang R (2020) HCOOH dissociation over the core-shell M@Pd bimetallic catalysts: probe into the effect of the core metal type on the catalytic performance. Appl Surf Sci 506:114938. https://doi.org/10.1016/j.apsusc.2019.144938

    Article  CAS  Google Scholar 

  25. Cho J, Lee S, Yoon SP, Han J, Nam SW, Lee KY, Ham HC (2017) Role of heteronuclear interactions in selective H2 formation from HCOOH decomposition on bimetallic Pd/M (M = Late Transition FCC Metal) catalysts. ACS Catal 7:2553–2562. https://doi.org/10.1021/acscatal.6b02825

    Article  CAS  Google Scholar 

  26. Jiang K, Xu K, Zou S, Cai WB (2014) B-doped Pd catalyst: Boosting room-temperature hydrogen production from formic acid-formate solutions. J Am Chem Soc 136:4861–4864. https://doi.org/10.1021/ja5008917

    Article  CAS  PubMed  Google Scholar 

  27. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249. https://doi.org/10.1103/PhysRevB.45.13244

    Article  CAS  Google Scholar 

  28. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  29. Li S, Rangarajan S, Scaranto J, Mavrikakis M (2021) On the structure sensitive of and CO coverage effects on formic acid decomposition on Pd surfaces. Surf Sci 709:121846. https://doi.org/10.1016/j.susc.2021.121846

    Article  CAS  Google Scholar 

  30. Scaranto J, Mavrikakis M (2016) Density functional theory studies of HCOOH decomposition on Pd(111). Surf Sci 650:111–120. https://doi.org/10.1016/j.susc.2015.11.020

    Article  CAS  Google Scholar 

  31. Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B 59:7413–7420. https://doi.org/10.1103/PhysRevB.59.7413

    Article  Google Scholar 

  32. Yoo JS, Abild-Pedersen F, Nørskov JK, Studt F (2014) Theoretical analysis of transition-metal catalysts for formic acid decomposition. ACS Catal 4:1226–1233. https://doi.org/10.1021/cs400664z

    Article  CAS  Google Scholar 

  33. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci 6:15–50. https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  34. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558. https://doi.org/10.1103/PhysRevB.47.558

    Article  CAS  Google Scholar 

  35. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B 49:14251. https://doi.org/10.1103/PhysRevB.49.14251

    Article  CAS  Google Scholar 

  36. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  37. Blöchl PE, Kästner J, Först CJ (1994) Projector augmented-wave method. Phys Rev B 50:17953. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  38. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  39. Methfessel M, Paxton AT (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40:3616. https://doi.org/10.1103/PhysRevB.40.3616

    Article  CAS  Google Scholar 

  40. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. https://doi.org/10.1002/jcc.20495

    Article  CAS  PubMed  Google Scholar 

  41. Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113:9901–9904. https://doi.org/10.1063/1.1329672

    Article  CAS  Google Scholar 

  42. Lide DR, Frederikse EHIR (2002) CRC handbook of chemistry and physics, 83rd edn. New York, CRC Press

    Google Scholar 

  43. Hocking WH (1976) The other rotamer of formic acid, cis-HCOOH. Z. Naturforsch. 31a:1113–1121

    Article  CAS  Google Scholar 

  44. Zhou SD, Qian C, Chen XZ (2011) Comparative theoretical study of adsorption and dehydrogenation of formic acid, hydrazine and isopropanol on Pd(111) surface. Catal Lett 141:726–734. https://doi.org/10.1007/s10562-011-0553-y

    Article  CAS  Google Scholar 

  45. Sautet P, Rose MK, Dunphy JC, Behler S, Salmeron M (2000) Adsorption and energetics of isolated CO molecules on Pd(111). Surf Sci 453:25–31. https://doi.org/10.1016/S0039-6028(00)00243-0

    Article  CAS  Google Scholar 

  46. Lininger CN, Gauthier JA, Li WL, Rossomme E, Welborn VV, Lin Z, Head-Gordon T, Head-Gordon M, Bell AT (2021) Challenges for density functional theory: calculation of CO adsorption on electrocatalyticlly relevant metals. Phys Chem Chem Phys 23:9394–9406. https://doi.org/10.1039/d0cp03821k

    Article  CAS  PubMed  Google Scholar 

  47. Abild-Pedersen F, Andersson MP (2007) CO adsorption energies on metals with correction for high coordination sites - a density functional study. Surf Sci 601:1747–1753. https://doi.org/10.1016/j.susc.2007.01.052

    Article  CAS  Google Scholar 

  48. Felter TE, Sowa EC (1989) Location of hydrogen adsorbed on palladium (111) studied by low-energy electron diffraction. Phys Rev B 40:891. https://doi.org/10.1103/PhysRevB.40.891

    Article  CAS  Google Scholar 

  49. Shustorovich E (1990) The bond-order conservation approach to chemisorption and heterogeneous catalysis: applications and implication. Adv Catal 37:101–163. https://doi.org/10.1016/S0360-0564(08)60364-8

    Article  CAS  Google Scholar 

  50. Grimme S, Antony J, Ehrlich S, Krieg S (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  51. Kozuch S, Shaik S (2011) How to conceptualize catalytic cycle? The energetic span model. Acc Chem Res 2:101–110. https://doi.org/10.1021/ar1000956

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The computational time is supported by the high-performance computing center of Jilin University, computing center of Jilin Province, and computing center of Changchun Institute of Applied Chemistry.

Funding

This work is supported by the National Natural Science Foundation of China (21733004, 21673220) and the National Key Research and Development Program of China (2016YFA0602900).

Author information

Authors and Affiliations

Authors

Contributions

Ni Wang made the calculations, wrote the paper, and participated in the interpretation of the data. Kai Li and Ying Wang analyzed the data and revised the paper. Zhijian Wu proposed the project, participated in the structure design, mechanism analysis, and revision of the paper.

Corresponding authors

Correspondence to Ying Wang or Zhijian Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1

The concept of the rate-determining steps and rate-determining states are discussed and the corresponding calculations based on the rate-determining states are listed in Figure S1. Table S1 is the calculated adsorption energies for the most stable adsorbed species on formic acid dissociation by RPBE with D2 and D3 method, respectively. (DOCX 43 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Li, K., Wang, Y. et al. Density functional study on formic acid decomposition on Pd(111) surface: a revisit and comparison with other density functional methods. J Mol Model 27, 285 (2021). https://doi.org/10.1007/s00894-021-04903-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04903-0

Keywords

Navigation