Skip to main content

Advertisement

Log in

Quantum mechanical investigations of mechanical and thermodynamic properties of SiC and ZrO2 ceramics

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The mechanical and thermodynamic properties of β and α structures of SiC and also monoclinic and cubic structures of ZrO2 have been considered via first-principles investigations based on the ultrasoft pseudopotential plane-wave DFT method. The calculated lattice constants, elastic constants, and mechanical properties of all the structures are in agreement with earlier DFT works and experimental reports, which show that the applied method is applicable. Also, the pressure-dependency performances of thermodynamic and mechanical properties of cubic structures of ZrO2 and SiC, from 0 to 50 Gpa pressure, have been studied. The obtained elastic constants and mechanical properties of both structures increase with the enhancement of pressure. These results show that SiC is more difficult to be compacted as pressure increases. The thermodynamic properties of these structures show that variations of thermodynamic properties with temperature and pressure for ZrO2 are slightly higher than SiC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Iuga M, Steinle-Neumann G, Meinhardt J (2007). Eur Phys J B 58:127

    Article  CAS  Google Scholar 

  2. Muhammada ID, Awangb M, Mamat O (2014). Adv Mater Sci 845:387

    Google Scholar 

  3. Fadda G, Colombo L, Zanzotto G (2009). Phys Rev B 79:214102

    Article  CAS  Google Scholar 

  4. Milman V, Perlov A, Refson K, Clark SJ, Gavartin J, Winkler B (2009). J Phys Condens Matter 21:485404

    Article  PubMed  CAS  Google Scholar 

  5. Li J, Meng S, Niu J, Lu H (2017). J Adv Ceram 6(1):43

    Article  CAS  Google Scholar 

  6. Qunbo F, Fuchi W, Huiling Z, Feng Z (2008). Mol Simul 34:1099

    Article  CAS  Google Scholar 

  7. Peyvaste I, Gh Alahyarizadeh A, Minuchehr MA (2018). Vacuum 154:37

    Article  CAS  Google Scholar 

  8. Dong X, Shin YC, Am J (2016). Ceram Soc 99(3):1006

    Article  CAS  Google Scholar 

  9. Varshney D, Shriya S, Varshney M, Singh N, Khenata R (2015). J Theor Appl Phys 9:221

    Article  Google Scholar 

  10. Zhang Y, Zhang J (2014). Mater Today Proc 1:44

    Article  CAS  Google Scholar 

  11. Liu QJ, Liu ZT, Feng LP (2011). Physica B 406:345

    Article  CAS  Google Scholar 

  12. Christensen A, Carter EA (2000). Phys Rev B Condens Matter 62:16968

    Article  CAS  Google Scholar 

  13. Zhao XS, Shang S-L, Liu ZK, Shen JY (2011). J Nucl Mater 415:13

    Article  CAS  Google Scholar 

  14. Prieto-Lopez LO, Yubero F, Machorro R, DeLaCruz W (2008). Microelectron J 39:1371

    Article  CAS  Google Scholar 

  15. Peuchert U, Okano Y, Menke Y, Reichel S, Ikesue A (2009). J Eur Ceram Soc 29:283

    Article  CAS  Google Scholar 

  16. Fu X, Wang S, Deng D, Yi K, Shao J, Fan Z (2006). Chin Opt Lett 4:247

    CAS  Google Scholar 

  17. Zhao S, Ma F, Song Z, Xu K (2008). Opt Mater 30:910

    Article  CAS  Google Scholar 

  18. Padture NP, Gell M, Jordan EH (2002). Science. 296:280

    Article  CAS  PubMed  Google Scholar 

  19. Vassen R, Cao X, Tietz F, Basu D, Stöver D (2000). J Am Ceram Soc 83:2023

    Article  CAS  Google Scholar 

  20. Fu H, Peng W, Gao T (2009). Mater Chem Phys 115:789

    Article  CAS  Google Scholar 

  21. Li J, Liao DY, Yip S, Najafabadi R, Ecker L (2003). J Appl Phys 93:9072

    Article  CAS  Google Scholar 

  22. Hohenberg P, Kohn W (1964). Phys Rev 136(3):864

    Article  Google Scholar 

  23. Jaffe JE, Bachorz RA, Gutowski M (2005). Phys Rev B 72:144107

    Article  CAS  Google Scholar 

  24. Kuwabara A, Tohei T, Yamamoto T, Tanaka I (2005). Phys Rev B 71:064301

    Article  CAS  Google Scholar 

  25. Wang W, Liang Z, Han X, Chen J, Xue C, Zhao H (2015). J Alloys Compd 622:504

    Article  CAS  Google Scholar 

  26. Lee WH, Yao XH (2015). Comput Mater Sci 106:76

    Article  CAS  Google Scholar 

  27. Vanderbilt D (1990). Phys Rev B 41(11):7892

    Article  CAS  Google Scholar 

  28. Wang S et al (2007). Appl Phys Lett 91(8):081916

    Article  CAS  Google Scholar 

  29. Perdew JP, Burke K, Ernzerhof M (1996). Phys Rev Lett 77:3865

    Article  CAS  PubMed  Google Scholar 

  30. Perdew JP et al (2008). Phys Rev Lett 100(13):136406

    Article  PubMed  CAS  Google Scholar 

  31. Giannozzi P et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 39:395502

    Article  Google Scholar 

  32. Fischer TH, Almlof J (1992). J Phys Chem 96(24):9768

    Article  CAS  Google Scholar 

  33. Pfrommer BG et al (1997). J Comput Phys 131(1):233

    Article  CAS  Google Scholar 

  34. Fast L, Wills JM, Johansson B, Eriksson O (1995). Phys Rev B 51:17431

    Article  CAS  Google Scholar 

  35. Liu XK, Zhou W, Zheng Z, Peng SM (2014). J Alloys Compd 615:975

    Article  CAS  Google Scholar 

  36. Ravindran P, Fast L, Korzhayi PA, Johansson B, Wills J, Eriksson O (1998). J Appl Phys 84:4891

    Article  CAS  Google Scholar 

  37. Zhao Y, Deng S, Liu H, Zhang J, Guob Z, Houa H (2018). Comput Mater Sci 154:365

    Article  CAS  Google Scholar 

  38. Voigt W (1928). Leipzig: Teubner:95

  39. Reuss A, Angew Z (1929). Math Mech 9:49

    CAS  Google Scholar 

  40. Schreiber E, Anderson OL, Saga M (1973) Elastic Constants and their Measurement. McGraw-Hill, New York

    Google Scholar 

  41. Mayer B, Anton H, Bott E, Methfessel M, Sticht J, Schmidt PC (2003). Intermetallics 11:23

    Article  CAS  Google Scholar 

  42. Zheng J, Zhang H, Zhou X, Liang J, Sheng L, Peng S (2014). Adv Condens Matter Phys 2014:1

    Article  CAS  Google Scholar 

  43. Hill R (1952). Proc Phys Soc London Sect A 65:349

    Article  Google Scholar 

  44. Blanco MA, Francisco E, Luana V (2004). Comput Phys Commun 158:57

    Article  CAS  Google Scholar 

  45. Blanco MA, Martin Pendas A, Francisco E, Recio JM, Franco R (1996). J Mol Struct (THEOCHEM) 368:245

    Article  CAS  Google Scholar 

  46. Florez M, Recio JM, Francisco E, Blanco MA, Martin Pendas A (2002). Phys Rev B 66:144112

    Article  CAS  Google Scholar 

  47. Poirier JP (2000) Introduction to the Physics of the Earth’s Interior, vol 39. Cambridge University Press, Oxford

    Book  Google Scholar 

  48. Eremenko VN, Tret Yachenko LA, Gusarenko LA (1973). Metallofizika 46:90

    Google Scholar 

  49. Philippe FW, Kim E, Tikare V, Mitchell JA (2015). CrystEngComm 44:18769

    Google Scholar 

  50. Zhu W, Wang R, Shu G, Wu P, Xia H (2010). J Phys Chem C 114:22361

    Article  CAS  Google Scholar 

  51. Sanati M, Albers RC, Lookman T, Saxena A (2011). Phys Rev B 84:014116

    Article  CAS  Google Scholar 

  52. Degueldre C, Tissot P, Lartigue H, Pouchon M (2003). Thermochim Acta 403:267

    Article  CAS  Google Scholar 

  53. Malakkal L, Szpunar B, Siripurapu RK, Szpunar JA (2017). Comput Mater Sci 128:249

    Article  CAS  Google Scholar 

  54. Ju WY, Jin TJ, Liang WY, Rong CX (2007). Chem Phys 18:3046

    Google Scholar 

Download references

Acknowledgements

The present study was carried out in the Iranian Center for Quantum Technologies (ICQTs). We would like to thank the Development and Application of New Technologies Company (TAKFAN) for their support.

Code availability

Quantum Espresso was used that is free.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Samaneh Bagheri Novir. The first draft of the manuscript was written by Samaneh Bagheri Novir and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Conceptualization: Samaneh Bagheri Novir; methodology: Samaneh Bagheri Novir; formal analysis and investigation: Samaneh Bagheri Novir; writing—original draft preparation: Samaneh Bagheri Novir; writing—review and editing: Samaneh Bagheri Novir, Mohammad Reza Aram; supervision: Mohammad Reza Aram.

Corresponding author

Correspondence to Samaneh Bagheri Novir.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novir, S.B., Aram, M.R. Quantum mechanical investigations of mechanical and thermodynamic properties of SiC and ZrO2 ceramics. J Mol Model 27, 269 (2021). https://doi.org/10.1007/s00894-021-04878-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04878-y

Keywords

Navigation