Skip to main content
Log in

Theoretical design and preparation research of molecularly imprinted polymers for steviol glycosides

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this paper, a novel molecularly imprinted polymer (MIP) for specific adsorption of steviol glycosides was designed, and the imprinting mechanism of self-assembly system between template and monomers was clearly explored. Firstly, steviol (STE) was chosen as dummy template, and the density functional theory (DFT) at B3LYP/6–31 + G (d, p) level was used to select monomers, imprinting molar ratios, solvents, and cross-linking agents. The selectivity to five steviol glycosides was also calculated. Importantly, reduced density gradient (RDG) theory combined with atom in molecules (AIM) and infrared spectrum (IR) was applied to investigate the bonding situation and the nature of noncovalent interaction in self-assembly system. The theoretical designed results showed that the template which interacts with acrylic acid (AA) has the minimum binding energy, and the complex with the molar ratio of 1 : 4 has the most stable structure. Toluene (TL) and ethylene glycol dimethacrylate (EGDMA) were chosen as the optimal solvent and cross-linking agent, respectively. Five hydrogen bonds formed in the self-assembly system are the key forces at the adsorption sites of MIPs through the RDG and AIM analyses. The MIPs were synthesized by theoretical predictions, and the results showed that the maximum adsorption capacity towards dulcoside A is 26.17 mg/g. This work provided a theoretical direction and experimental validation for deeper researches of the MIPs for steviol glycosides. In addition, the method of RDG theory coupled with AIM and IR also could be used to analyze other imprinting formation mechanisms systematically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Chaturvedula VS, Upreti M, Prakash I (2011) Diterpene glycosides from Stevia rebaudiana. Molecules 16(5):3552–3562. https://doi.org/10.3390/molecules16053552

    Article  CAS  PubMed  Google Scholar 

  2. Ruiz-Ruiz JC, Moguel-Ordonez YB, Segura-Campos MR (2017) Biological activity of Stevia rebaudiana Bertoni and their relationship to health. Crit Rev Food Sci Nutr 57(12):2680–2690. https://doi.org/10.1080/10408398.2015.1072083

    Article  CAS  PubMed  Google Scholar 

  3. Aranda-Gonzalez I, Moguel-Ordonez Y, Betancur-Ancona D (2015) Validation of HPLC-UV method for determination of minor glycosides contained in Stevia rebaudiana Bertoni leaves. Biomed Chromatogr 29(5):733–738. https://doi.org/10.1002/bmc.3349

    Article  CAS  PubMed  Google Scholar 

  4. Wang YH, Avula B, Tang W, Wang M, Elsohly MA, Khan IA (2015) Ultra-HPLC method for quality and adulterant assessment of steviol glycosides sweeteners - Stevia rebaudiana and stevia products. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 32(5):674–685. https://doi.org/10.1080/19440049.2015.1021863

    Article  CAS  PubMed  Google Scholar 

  5. Jackson AU, Tata A, Wu C, Perry RH, Haas G, West L, Cooks RG (2009) Direct analysis of Stevia leaves for diterpene glycosides by desorption electrospray ionization mass spectrometry. Analyst 134(5):867–874. https://doi.org/10.1039/b823511b

    Article  CAS  PubMed  Google Scholar 

  6. Gardana C, Simonetti P (2018) Determination of steviol glycosides in commercial extracts of Stevia rebaudiana and sweeteners by ultra-high performance liquid chromatography Orbitrap mass spectrometry. J Chromatogr A 1578:8–14. https://doi.org/10.1016/j.chroma.2018.09.057

    Article  CAS  PubMed  Google Scholar 

  7. Wang H, Liu Y, Wei S, Yao S, Zhang J, Huang H (2016) Selective extraction and determination of fluoroquinolones in bovine milk samples with montmorillonite magnetic molecularly imprinted polymers and capillary electrophoresis. Anal Bioanal Chem 408(2):589–598. https://doi.org/10.1007/s00216-015-9140-1

    Article  CAS  PubMed  Google Scholar 

  8. Tong Z, Han Y, Gu L, Li Z, Du K, Kong G, Liu D, Peng J, Shi J (2020) Preparation and application of simetryn-imprinted nanoparticles in triazine herbicide residue analysis. J Sep Sci 43(6):1107–1118. https://doi.org/10.1002/jssc.201900739

    Article  CAS  PubMed  Google Scholar 

  9. Zhao M, Shao H, He Y, Li H, Yan M, Jiang Z, Wang J, Abd El-Aty AM, Hacimuftuoglu A, Yan F, Wang Y, She Y (2019) The determination of patulin from food samples using dual-dummy molecularly imprinted solid-phase extraction coupled with LC-MS/MS. J Chromatogr B Anal Technol Biomed Life Sci 1125:121714. https://doi.org/10.1016/j.jchromb.2019.121714

    Article  CAS  Google Scholar 

  10. Zhu G, Cheng G, Wang P, Li W, Wang Y, Fan J (2019) Water compatible imprinted polymer prepared in water for selective solid phase extraction and determination of ciprofloxacin in real samples. Talanta 200:307–315. https://doi.org/10.1016/j.talanta.2019.03.070

    Article  CAS  PubMed  Google Scholar 

  11. Wang Q, Zhang D (2018) A novel fluorescence sensing method based on quantum dot-graphene and a molecular imprinting technique for the detection of tyramine in rice wine. Anal Methods 10(31):3884–3889. https://doi.org/10.1039/c8ay01117f

    Article  CAS  Google Scholar 

  12. Martins RO, Gomes IC, Mendonca Telles AD, Kato L, Souza PS, Chaves AR (2020) Molecularly imprinted polymer as solid phase extraction phase for condensed tannin determination from Brazilian natural sources. J Chromatogr A 1620:460977. https://doi.org/10.1016/j.chroma.2020.460977

    Article  CAS  PubMed  Google Scholar 

  13. Sun X, Wang M, Peng J, Yang L, Wang X, Wang F, Zhang X, Wu Q, Chen R, Chen J (2019) Dummy molecularly imprinted solid phase extraction of climbazole from environmental water samples. Talanta 196:47–53. https://doi.org/10.1016/j.talanta.2018.12.017

    Article  CAS  PubMed  Google Scholar 

  14. Liu J, Wang Y, Tang S, Gao Q, Jin R (2017) Theoretical guidance for experimental research of the dicyandiamide and methacrylic acid molecular imprinted polymer. New J Chem 41(22):13370–13376. https://doi.org/10.1039/c7nj00207f

    Article  CAS  Google Scholar 

  15. Z-q D, J-b L, S-s T, Wang Y, Li B, R-f J (2016) Theoretical design and selectivity researches on the enrofloxacin imprinted polymer. Struct Chem 27(4):1135–1142. https://doi.org/10.1007/s11224-015-0735-0

    Article  CAS  Google Scholar 

  16. Silva CF, Borges KB, Nascimento Jr CS (2019) Computational study on acetamiprid-molecular imprinted polymer. J Mol Model 25(4):104. https://doi.org/10.1007/s00894-019-3990-y

    Article  CAS  PubMed  Google Scholar 

  17. Wang L, Yang F, Zhao X, Li Y (2020) Screening of functional monomers and solvents for the molecular imprinting of paclitaxel separation: a theoretical study. J Mol Model 26(2):26. https://doi.org/10.1007/s00894-019-4277-z

    Article  CAS  PubMed  Google Scholar 

  18. Liu JB, Wang GY, Tang SS, Gao Q, Liang DD, Jin RF (2019) Theoretical and experimental research on self-assembly system of molecularly imprinted polymers formed via chloramphenicol and methacrylic acid. J Sep Sci 42(3):769–777. https://doi.org/10.1002/jssc.201800997

    Article  CAS  PubMed  Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria MARGE, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta Jr. JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT,

  20. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553–566. https://doi.org/10.1080/00268977000101561

    Article  CAS  Google Scholar 

  21. Zhang B, Fan X, Zhao D (2018) Computer-aided design of molecularly imprinted polymers for simultaneous detection of clenbuterol and its metabolites. Polymers (Basel) 11(1):17 https://doi.org/10.3390/polym11010017

  22. Zhao W, Liu J, Tang S, Jin R (2020) Theoretical research of molecular imprinted polymers formed from formaldehyde and methacrylic acid. J Mol Model 26(4):88. https://doi.org/10.1007/s00894-020-04362-z

    Article  CAS  PubMed  Google Scholar 

  23. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132(18):6498–6506. https://doi.org/10.1021/ja100936w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang X, Du X, Song J, Huang J (2019) Synthesis, crystal structure, hydrogen bonding interactions analysis of novel acyl thiourea derivative. J Phys Org Chem 33(1):e4016. https://doi.org/10.1002/poc.4016

  25. Lu T, Chen FJ (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  PubMed  Google Scholar 

  26. Humphrey W, Dalke A, Schulten KJ (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  PubMed  Google Scholar 

  27. Bader RFW, Nguyen-Dang TT, Tal Y (1981) A topological theory of molecular structure. Rep Prog Phys 44(8):893–948. https://doi.org/10.1088/0034-4885/44/8/002

    Article  Google Scholar 

  28. Yang W, Liu L, Ni X, Zhou W, Huang W, Liu H, Xu W (2016) Computer-aided design and synthesis of magnetic molecularly imprinted polymers with high selectivity for the removal of phenol from water. J Sep Sci 39(3):503–517. https://doi.org/10.1002/jssc.201500866

    Article  CAS  PubMed  Google Scholar 

  29. Li H, Zhang W, Wu Z, Huang X, Hui A, He Y, Wang H (2020) Theoretical design, preparation, and evaluation of Ginkgolide B molecularly imprinted polymers. J Sep Sci 43(2):514–523. https://doi.org/10.1002/jssc.201900675

    Article  CAS  PubMed  Google Scholar 

  30. Huang X, Zhang W, Wu Z, Li H, Yang C, Ma W, Hui A, Zeng Q, Xiong B, Xian Z (2020) Computer simulation aided preparation of molecularly imprinted polymers for separation of bilobalide. J Mol Model 26(8):198. https://doi.org/10.1007/s00894-020-04460-y

    Article  CAS  PubMed  Google Scholar 

  31. Silva AF, Popelier PLA (2018) MP2-IQA: upscaling the analysis of topologically partitioned electron correlation. J Mol Model 24(8):201. https://doi.org/10.1007/s00894-018-3717-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

High-level talents project of Dalian City (2016RQ064); Research Foundation of Education Bureau of Liaoning Province (2016J008); National Natural Science Foundation of China (U1603285).

Author information

Authors and Affiliations

Authors

Contributions

Yajie Zhu, Yan Ding, and Yan Li designed and conceived the study; Yajie Zhu and Dongxu Tian analyzed the data and drafted the manuscript; Dongxu Tian, Yan Li, Lin-Wu Zhuang, Yinpeng Wang, and Wei Xiao provided advice and technical assistance; Jingbo Zhu provided advice and funding. Yan Ding revised the manuscript. All authors have contributed to and approved the final manuscript.

Corresponding authors

Correspondence to Yan Ding or Jingbo Zhu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Ding, Y., Tian, D. et al. Theoretical design and preparation research of molecularly imprinted polymers for steviol glycosides. J Mol Model 27, 238 (2021). https://doi.org/10.1007/s00894-021-04819-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04819-9

Keywords

Navigation