Skip to main content
Log in

Screening of functional monomers and solvents for the molecular imprinting of paclitaxel separation: a theoretical study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The interactions between the template molecule paclitaxel (PTX) and seven functional monomers containing methacrylic acid (MA), acrolein (AC), 4-vinylbenzoic acid (4VA), acrylonitrile (AN), 2-vinylpyridine (2VP), 2,6-bisacrylamide pyridine (BAP) and methyl methacrylate (MM) were systematically investigated adopting the density functional theory (DFT) method. Moreover, the different binding sites on PTX and solvents embracing chloroform, acetone, ethanol, methanol, and acetonitrile were considered. The calculated solvent energies (ΔEsolvent) and template-monomer binding energies (ΔEb) suggest that the chloroform is the most suitable solvent for the molecular imprinting reaction of PTX among the studied five solvents. Furthermore, from the obtained ΔEb, we can find that the monomer 4VA combining with PTX in the form of the specific intermolecular hydrogen bonds would present the most stable structure among the investigated monomers. These results can provide valuable theoretical guidance for the efficient extraction of PTX by the molecular imprinting technique in experiments.

Graphical abstracts

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2

Similar content being viewed by others

References

  1. Chen LX, Wang XY, Lu WH, Wu XQ, Li JH (2016) Molecular imprinting: perspectives and applications. Chem. Soc. Rev. 45(8):2137–2211. https://doi.org/10.1039/c6cs00061d

    Article  CAS  PubMed  Google Scholar 

  2. Pan JM, Chen W, Ma Y, Pan GQ (2018) Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem. Soc. Rev. 47(15):5574–5587. https://doi.org/10.1039/c7cs00854f

    Article  CAS  PubMed  Google Scholar 

  3. Bompart M, Goto A, Wattraint O, Sarazin C, Tsujii Y, Gonzato C, Haupt K (2015) Molecularly imprinted polymers by reversible chain transfer catalysed polymerization. Polymer 78:31–36. https://doi.org/10.1016/j.polymer.2015.09.060

    Article  CAS  Google Scholar 

  4. Zhang HQ (2014) Water-compatible molecularly imprinted polymers: promising synthetic substitutes for biological receptors. Polymer 55(3):699–714. https://doi.org/10.1016/j.polymer.2013.12.064

    Article  CAS  Google Scholar 

  5. Mofrad S, Naeimpoor F, Hejazi P, Nematollahzadeh A (2016) Synthesis of lysozyme imprinted column with macroporous structure and enhanced selectivity: utilization of cryogelation technique and electrostatic functional monomers. J. Appl. Polym. Sci. 133(3):42880. https://doi.org/10.1002/app.42880

    Article  CAS  Google Scholar 

  6. Wu LQ, Zhu KC, Zhao WP, Li YZ (2005) Theoretical and experimental study of nicotinamide molecularly imprinted polymers with different porogens. Anal. Chim. Acta 549(1–2):39–44. https://doi.org/10.1016/j.aca.2005.06.009

    Article  CAS  Google Scholar 

  7. Vasapollo G, Del Sole R, Mergola L, Lazzoi MR, Scardino A, Scorrano S, Mele G (2011) Molecularly imprinted polymers: present and future prospective. Int. J. Mol. Sci. 12(9):5908–5945. https://doi.org/10.3390/ijms12095908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yao GH, Liang RP, Huang CF, Wang Y, Qiu JD (2013) Surface plasmon resonance sensor based on magnetic molecularly imprinted polymers amplification for pesticide recognition. Anal. Chem. 85(24):11944–11951. https://doi.org/10.1021/ac402848x

    Article  CAS  PubMed  Google Scholar 

  9. Wei YB, Zeng Q, Hu Q, Wang M, Tao J, Wang LS (2018) Self-cleaned electrochemical protein imprinting biosensor basing on a thermo-responsive memory hydrogel. Biosens. Bioelectron. 99:136–141. https://doi.org/10.1016/j.bios.2017.07.049

    Article  CAS  PubMed  Google Scholar 

  10. Ogunlaja AS, Coombes MJ, Torto N, Tshentu ZR (2014) The adsorptive extraction of oxidized sulfur-containing compounds from fuels by using molecularly imprinted chitosan materials. React. Funct. Polym. 81:61–76. https://doi.org/10.1016/j.reactfunctpolym.2014.04.006

    Article  CAS  Google Scholar 

  11. Terracina JJ, Bergkvist M, Sharfstein ST (2016) Computational investigation of stoichiometric effects, binding site heterogeneities, and selectivities of molecularly imprinted polymers. J. Mol. Model. 22(6):139. https://doi.org/10.1007/s00894-016-3005-1

    Article  CAS  PubMed  Google Scholar 

  12. Dai ZQ, Liu JB, Tang SS, Wang Y, Wang YM, Jin RF (2015) Optimization of enrofloxacin-imprinted polymers by computer-aided design. J. Mol. Model. 21(11):290. https://doi.org/10.1007/s00894-015-2836-5

    Article  CAS  PubMed  Google Scholar 

  13. Liu JB, Wang Y, Tang SS, Gao Q, Jin RF (2017) Theoretical guidance for experimental research of the dicyandiamide and methacrylic acid molecular imprinted polymer. New J. Chem. 41(22):13370–13376. https://doi.org/10.1039/c7nj00207f

    Article  CAS  Google Scholar 

  14. Yu RP, Zhou HF, Li MY, Song QJ (2019) Rational selection of the monomer for molecularly imprinted polymer preparation for selective and sensitive detection of 3-methylindole in water. J. Electroanal. Chem. 832:129–136. https://doi.org/10.1016/j.jelechem.2018.10.043

    Article  CAS  Google Scholar 

  15. Sajini T, Thomas R, Mathew B (2019) Rational design and synthesis of photo-responsive molecularly imprinted polymers for the enantioselective intake and release of L-phenylalanine benzyl ester on multiwalled carbon nanotubes. Polymer 173:127–140. https://doi.org/10.1016/j.polymer.2019.04.031

    Article  CAS  Google Scholar 

  16. Silva CF, Borges KB, Nascimento CS (2019) Computational study on acetamiprid-molecular imprinted polymer. J. Mol. Model. 25(4):104. https://doi.org/10.1007/s00894-019-3990-y

    Article  CAS  PubMed  Google Scholar 

  17. Martins N, Carreiro EP, Locati A, Ramalho JPP, Cabrita MJ, Burke AJ, Garcia R (2015) Design and development of molecularly imprinted polymers for the selective extraction of deltamethrin in olive oil: an integrated computational-assisted approach. J. Chromatogr. A 1409:1–10. https://doi.org/10.1016/j.chroma.2015.07.025

    Article  CAS  PubMed  Google Scholar 

  18. Fonseca MC, Nascimento CS, Borges KB (2016) Theoretical investigation on functional monomer and solvent selection for molecular imprinting of tramadol. Chem. Phys. Lett. 645:174–179. https://doi.org/10.1016/j.cplett.2015.12.061

    Article  CAS  Google Scholar 

  19. Wu HY, Li X, Meng SC, Xu JC, Zhang WC, Jiang Y, Qiu FX (2018) A comprehensive theoretical study of structural optimization, interaction energies calculations and solvent effects between ractopamine and functional monomers in molecular imprinting polymers. Polym. Bull. 75(5):1981–1996. https://doi.org/10.1007/s00289-017-2140-x

    Article  CAS  Google Scholar 

  20. Aggarwal BB, Shishodia S, Takada Y, Banerjee S, Newman RA, Bueso-Ramos CE, Price JE (2005) Curcumin suppresses the paclitaxel-induced nuclear factor-kappa B pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin. Cancer Res. 11(20):7490–7498. https://doi.org/10.1158/1078-0432.ccr-05-1192

    Article  CAS  PubMed  Google Scholar 

  21. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R, Johnson DH (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. New Engl J Med 355(24):2542–2550. https://doi.org/10.1056/NEJMoa061884

    Article  CAS  PubMed  Google Scholar 

  22. Liu WC, Gong T, Zhu P (2016) Advances in exploring alternative Taxol sources. RSC Adv. 6(54):48800–48809. https://doi.org/10.1039/c6ra06640b

    Article  CAS  Google Scholar 

  23. He CT, Li ZL, Zhou Q, Shen C, Huang YY, Mubeen S, Yang JZ, Yuan JG, Yang ZY (2018) Transcriptome profiling reveals specific patterns of paclitaxel synthesis in a new Taxus yunnanensis cultivar. Plant Physiol. Biochem. 122:10–18. https://doi.org/10.1016/j.plaphy.2017.10.028

    Article  CAS  PubMed  Google Scholar 

  24. Fan JP, Xu XK, Xu R, Zhang XH, Zhu JH (2015) Preparation and characterization of molecular imprinted polymer functionalized with core/shell magnetic particles (Fe3O4@SiO2@MIP) for the simultaneous recognition and enrichment of four taxoids in Taxus x media. Chem. Eng. J. 279:567–577. https://doi.org/10.1016/j.cej.2015.05.045

    Article  CAS  Google Scholar 

  25. Ghasemi S, Nematollahzadeh A (2018) Molecularly imprinted ultrafiltration polysulfone membrane with specific nano-cavities for selective separation and enrichment of paclitaxel from plant extract. React. Funct. Polym. 126:9–19. https://doi.org/10.1016/j.reactfunctpolym.2018.02.012

    Article  CAS  Google Scholar 

  26. Zhang H, Li YQ, Zheng DY, Cao SL, Chen LH, Huang LL, Xiao HN (2019) Bio-inspired construction of cellulose-based molecular imprinting membrane with selective recognition surface for paclitaxel separation. Appl. Surf. Sci. 466:244–253. https://doi.org/10.1016/j.apsusc.2018.10.038

    Article  CAS  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc., Wallingford, CT, USA

    Google Scholar 

  28. Hohenberg P, Kohn W (1964) Inhomogeneous Electron gas. Phys. Rev. 136(3B):B864–B871

    Article  Google Scholar 

  29. Wei Q, Zhou Q, Zhao MY, Zhang MX, Song P (2017) Theoretical study on ESIPT mechanism of 2-acetylindan-1,3-dione in hexane and acetonitrile solvents. J. Lumin. 183:7–12. https://doi.org/10.1016/j.jlumin.2016.11.024

    Article  CAS  Google Scholar 

  30. Liu J, Xia JR, Song P, Ding Y, Cui YL, Liu XM, Dai YM, Ma FC (2014) Organic nonlinear optical materials: the mechanism of intermolecular covalent bonding interactions of Kekule hydrocarbons with significant singlet Biradical character. ChemPhysChem 15(12):2626–2633. https://doi.org/10.1002/cphc.201402026

    Article  CAS  PubMed  Google Scholar 

  31. Cao S, Wang JG, Ma FC, Sun MT (2018) Charge-transfer channel in quantum dot-graphene hybrid materials. Nanotechnology 29(14):12. https://doi.org/10.1088/1361-6528/aaac62

    Article  CAS  Google Scholar 

  32. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38(6):3098–3100

    Article  CAS  Google Scholar 

  33. Sun MT, Xia LX, Chen MD (2009) Self-assembled dynamics of silver nanoparticles and self-assembled dynamics of 1,4-benzenedithiol adsorbed on silver nanoparticles: surface-enhanced Raman scattering study. Spectrochim Acta Part A 74(2):509–514. https://doi.org/10.1016/j.saa.2009.06.055

    Article  CAS  Google Scholar 

  34. Gomez-Pineda LE, Pina-Luis GE, Cortes-Romero CM, Palomar-Pardave ME, Rosquete-Pina GA, Diaz-Garcia ME, Hernandez MDC (2010) Quantum chemical calculations on the interaction between flavonol and functional monomers (methacrylic acid and 4-vinylpyridine) in molecularly imprinted polymers. Molecules 15(6):4017–4032. https://doi.org/10.3390/molecules15064017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Simon S, Duran M, Dannenberg JJ (1996) How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J. Chem. Phys. 105(24):11024–11031. https://doi.org/10.1063/1.472902

    Article  CAS  Google Scholar 

  36. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19(4):553–566. https://doi.org/10.1080/00268977000101561

    Article  CAS  Google Scholar 

  37. Saloni J, Walker K, Hill G (2013) Theoretical investigation on monomer and solvent selection for molecular imprinting of nitrocompounds. J. Phys. Chem. A 117(7):1531–1534. https://doi.org/10.1021/jp2124839

    Article  CAS  PubMed  Google Scholar 

  38. Garcia-Rates M, Neese F (2019) Efficient implementation of the analytical second derivatives of hartree-fock and hybrid DFT energies within the framework of the conductor-like polarizable continuum model. J. Comput. Chem. 40(20):1816–1828. https://doi.org/10.1002/jcc.25833

    Article  CAS  PubMed  Google Scholar 

  39. Gomez-Pineda LE, Pina-Luis GE, Cuan A, Garcia-Calzon JA, Diaz-Garcia ME (2011) Physico-chemical characterization of flavonol molecularly imprinted polymers. React. Funct. Polym. 71(4):402–408. https://doi.org/10.1016/j.reactfunctpolym.2010.12.013

    Article  CAS  Google Scholar 

  40. Prasad BB, Rai G (2012) Study on monomer suitability toward the template in molecularly imprinted polymer: an ab initio approach. Spectrochim Acta Part A 88:82–89. https://doi.org/10.1016/j.saa.2011.11.061

    Article  CAS  Google Scholar 

  41. Cowen T, Karim K, Piletsky S (2016) Computational approaches in the design of synthetic receptors - a review. Anal. Chim. Acta 936:62–74. https://doi.org/10.1016/j.aca.2016.07.027

    Article  CAS  PubMed  Google Scholar 

  42. Riahi S, Edris-Tabrizi F, Javanbakht M, Ganjali MR, Norouzi P (2009) A computational approach to studying monomer selectivity towards the template in an imprinted polymer. J. Mol. Model. 15(7):829–836. https://doi.org/10.1007/s00894-008-0437-2

    Article  PubMed  Google Scholar 

  43. Saloni J, Dasary SSR, Anjaneyulu Y, Yu H, Hill G (2010) Molecularly imprinted polymers for detection of explosives: computational study on molecular interactions of 2,6-dinitrotoluene and methacrylic acid complex. Struct. Chem. 21(6):1171–1184. https://doi.org/10.1007/s11224-010-9657-z

    Article  CAS  Google Scholar 

  44. Saloni J, Lipkowski P, Dasary SSR, Anjaneyulu Y, Yu HT, Hill G (2011) Theoretical study of molecular interactions of TNT, acrylic acid, and ethylene glycol dimethacrylate - elements of molecularly imprinted polymer modeling process. Polymer 52(4):1206–1216. https://doi.org/10.1016/j.polymer.2010.11.057

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Fundamental Research Funds for the Central Universities (2572018AA21) and the Excellent Youth Foundation of Heilongjiang Scientific Committee (No. JC2018005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuhua Zhao or Yuanzuo Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM1

(DOCX 4.65 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yang, F., Zhao, X. et al. Screening of functional monomers and solvents for the molecular imprinting of paclitaxel separation: a theoretical study. J Mol Model 26, 26 (2020). https://doi.org/10.1007/s00894-019-4277-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4277-z

Keywords

Navigation