Skip to main content
Log in

A molecular design for a turn-off NIR fluoride chemosensor

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We designed a turn-off near-infrared fluorescent fluoride chemosensor NIR-BODIPY-Si through the density functional theory/time-dependent functional theory calculations. In the designed sensor, the tert-butyldimethylsilyloxy moiety responses to the fluoride-triggered desilylation process, and the BODIPY dye serves as fluorophore. The molecular design firstly showed that the possibility of photoinduced electron transfer is low/high in NIR-BODIPY-Si/NIR-BODIPY-O (the desilylation product), thus referring that the fluorescence sensing mechanism is a photoinduced electron transfer mechanism that quenched the sensor’s fluorescence after detection of fluoride anions. Absorption and emission spectra further demonstrated that the designed sensor is a near-infrared chemosensor. The largest binding energy between NIR-BODIPY-Si and F suggests that the sensor has an excellent selectivity to F and the low barrier of the desilylation reaction accounts for the sensor’s rapid response speed to F. We also provided the synthetic routine for the molecule sensor, with the expectation that this molecular design can shed some light on the experimentally based design procedure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Scheme 4
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Camargo JA (2003) Fluoride toxicity to aquatic organisms: a review. Chemosphere 50(3):251–264. https://doi.org/10.1016/S0045-6535(02)00498-8

    Article  PubMed  Google Scholar 

  2. Li G-Y, Zhao G-J, Liu Y-H, Han K-L, He G-Z (2010) TD-DFT study on the sensing mechanism of a fluorescent chemosensor for fluoride: excited-state proton transfer. J. Comput. Chem. 31:1759–1765. https://doi.org/10.1002/jcc.21466

    Article  CAS  PubMed  Google Scholar 

  3. Calderón-Ortiz LK, Täuscher E, Bastos E, Görls H, Weiß D, Beckert R (2012) Hydroxythiazole-based fluorescent probes for fluoride ion detection. J. Organomet. Chem. 2012:2535–2541. https://doi.org/10.1002/ejoc.201200140

    Article  CAS  Google Scholar 

  4. Wu J, Liu W, Ge J, Zhang H, Wang P (2011) New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem. Soc. Rev. 40(7):3483–3495. https://doi.org/10.1039/C0CS00224K

    Article  CAS  PubMed  Google Scholar 

  5. Chen ZJ, Wang LM, Zou G, Zhang L, Zhang GJ, Cai XF, Teng MS (2012) Colorimetric and ratiometric fluorescent chemosensor for fluoride ion based on perylene diimide derivatives. Dyes Pigments 94(3):410–415. https://doi.org/10.1016/j.dyepig.2012.01.024

    Article  CAS  Google Scholar 

  6. Han J, Zhang J, Gao M, Hao H, Xu X (2019) Recent advances in chromo-fluorogenic probes for fluoride detection. Dyes Pigments 162:412–439. https://doi.org/10.1016/j.dyepig.2018.10.047

    Article  CAS  Google Scholar 

  7. Du M, Huo B, Liu J, Li M, Fang L, Yang Y (2018) A near-infrared fluorescent probe for selective and quantitative detection of fluoride ions based on Si-Rhodamine. Anal. Chim. Acta 1030:172–182. https://doi.org/10.1016/j.aca.2018.05.013

    Article  CAS  PubMed  Google Scholar 

  8. Gunnlaugsson T, Kruger PE, Jensen P, Tierney J, Ali HDP, Hussey GM (2005) Colorimetric “naked eye” sensing of anions in aqueous solution. J. Org. Chem. 70(26):10875–10878. https://doi.org/10.1021/jo0520487

    Article  CAS  PubMed  Google Scholar 

  9. Peng X, Wu Y, Fan J, Tian M, Han K (2005) Colorimetric and ratiometric fluorescence sensing of fluoride: tuning selectivity in proton transfer. J. Org. Chem. 70(25):10524–10531. https://doi.org/10.1021/jo051766q

    Article  CAS  PubMed  Google Scholar 

  10. Mallick A, Roy UK, Haldar B, Pratihar S (2012) A newly developed highly selective ratiometric fluoride ion sensor: spectroscopic, NMR and density functional studies. Analyst 137:1247–1251. https://doi.org/10.1039/c2an16132j

    Article  CAS  PubMed  Google Scholar 

  11. Guha S, Saha S (2010) Fluoride ion sensing by an anion-pi interaction. J. Am. Chem. Soc. 132(50):17674–17677. https://doi.org/10.1021/ja107382x

    Article  CAS  PubMed  Google Scholar 

  12. Guha S, Goodson FS, Corson LJ, Saha S (2012) Boundaries of anion/naphthalenediimide interactions: from anion-pi interactions to anion-induced charge-transfer and electron-transfer phenomena. J. Am. Chem. Soc. 134(33):13679–13691. https://doi.org/10.1021/ja303173n

    Article  CAS  PubMed  Google Scholar 

  13. Zhang JF, Lim CS, Bhuniya S, Cho BR, Kim JS (2011) A highly selective colorimetric and ratiometric two-photon fluorescent probe for fluoride ion detection. Org. Lett. 13(5):1190–1193. https://doi.org/10.1021/ol200072e

    Article  CAS  PubMed  Google Scholar 

  14. Jun Feng Z, Su LC, Sankarprasad B, Bong Rae C, Jong Seung K (2011) A highly selective colorimetric and ratiometric two-photon fluorescent probe for fluoride ion detection. Org. Lett. 13(5):1190–1193

    Article  Google Scholar 

  15. Cao J, Zhao C, Feng P, Zhang Y, Zhu W (2012) A colorimetric and ratiometric NIR fluorescent turn-on fluoride chemodosimeter based on BODIPY derivatives: high selectivity via specific Si–O cleavage. RSC Adv. 2(2):418–420. https://doi.org/10.1039/c1ra00942g

    Article  CAS  Google Scholar 

  16. Zhou Y, Zhang JF, Yoon J (2014) Fluorescence and colorimetric chemosensors for fluoride-ion detection. Chem. Rev. 114(10):5511–5571. https://doi.org/10.1021/cr400352m

    Article  CAS  PubMed  Google Scholar 

  17. Suresh R, Thiyagarajan SK, Ramamurthy P (2016) Encumbrance in desilylation triggered fluorogenic detection of the fluoride ion - a kinetic approach. Phys. Chem. Chem. Phys. 18(47):32247–32255. https://doi.org/10.1039/c6cp06557k

    Article  CAS  PubMed  Google Scholar 

  18. Zheng Y, Duan Y, Ji K, Wang R-L, Wang B (2016) Tuning the reaction rates of fluoride probes for detection in aqueous solution. RSC Adv. 6:25242–25245. https://doi.org/10.1039/C6RA03252D

    Article  CAS  Google Scholar 

  19. Hilderbrand SA, Weissleder R (2010) Near-infrared fluorescence: application to in vivo molecular imaging. Curr. Opin. Chem. Biol. 14(1):71–79. https://doi.org/10.1016/j.cbpa.2009.09.029

    Article  CAS  PubMed  Google Scholar 

  20. Lou Z, Li P, Han K (2015) Redox-responsive fluorescent probes with different design strategies. Acc. Chem. Res. 48(5):1358–1368

    Article  CAS  Google Scholar 

  21. Chu T-s LR, B-t L (2016) Reversibly monitoring oxidation and reduction events in living biological systems: recent development of redox-responsive reversible NIR biosensors and their applications in in vitro/in vivo fluorescence imaging. Biosens. Bioelectron. 86:643–655. https://doi.org/10.1016/j.bios.2016.07.039

    Article  CAS  PubMed  Google Scholar 

  22. Guo Z, Park S, Yoon J, Shin I (2014) Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem. Soc. Rev. 43:16–29. https://doi.org/10.1039/c3cs60271k

    Article  CAS  PubMed  Google Scholar 

  23. Sun W, Guo S, Hu C, Fan J, Peng X (2016) Recent development of chemosensors based on cyanine platforms. Chem. Rev. 116:7768–7817. https://doi.org/10.1021/acs.chemrev.6b00001

    Article  CAS  PubMed  Google Scholar 

  24. Frangioni J (2003) In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7:626–634. https://doi.org/10.1016/j.cbpa.2003.08.007

    Article  CAS  PubMed  Google Scholar 

  25. Shiraogawa T, Candel G, Fukuda R, Ciofini I, Adamo C, Okamoto A, Ehara M (2019) Photophysical properties of fluorescent imaging biological probes of nucleic acids: SAC-CI and TD-DFT study. J. Comput. Chem. 40(1):127–134. https://doi.org/10.1002/jcc.25553

    Article  CAS  PubMed  Google Scholar 

  26. Yu F, Li P, Li G, Zhao G, Chu T, Han K (2011) A near-IR reversible fluorescent probe modulated by selenium for monitoring peroxynitrite and imaging in living cells. J. Am. Chem. Soc. 133(29):11030–11033. https://doi.org/10.1021/ja202582x

    Article  CAS  PubMed  Google Scholar 

  27. Yu F, Li P, Wang B, Han K (2013) Reversible near-infrared fluorescent probe introducing tellurium to mimetic glutathione peroxidase for monitoring the redox cycles between peroxynitrite and glutathione in vivo. J. Am. Chem. Soc. 135(20):7674–7680. https://doi.org/10.1021/ja401360a

    Article  CAS  PubMed  Google Scholar 

  28. Tian X, Tong X, Li Z, Li D, Kong Q, Yang X (2018) In vivo fluoride ion detection and imaging in mice using a designed near-infrared Ratiometric fluorescent probe based on IR-780. J. Agric. Food Chem. 66(43):11486–11491. https://doi.org/10.1021/acs.jafc.8b03736

    Article  CAS  PubMed  Google Scholar 

  29. Kamkaew A, Lim SH, Lee HB, Kiew LV, Chung LY, Burgess K (2013) BODIPY dyes in photodynamic therapy. Chem. Soc. Rev. 42(1):77–88. https://doi.org/10.1039/c2cs35216h

    Article  CAS  PubMed  Google Scholar 

  30. Niu SL, Ulrich G, Ziessel R, Kiss A, Renard P-Y, Romieu A (2009) Water-soluble BODIPY derivatives. Org. Lett. 11:2049–2052. https://doi.org/10.1021/ol900302n

    Article  CAS  PubMed  Google Scholar 

  31. Li SJ, Fu YJ, Li CY, Li YF, Yi LH, Ou-Yang J (2017) A near-infrared fluorescent probe based on BODIPY derivative with high quantum yield for selective detection of exogenous and endogenous cysteine in biological samples. Anal. Chim. Acta 994:73–81. https://doi.org/10.1016/j.aca.2017.09.031

    Article  CAS  PubMed  Google Scholar 

  32. Wang B, Li P, Yu F, Song P, Sun X, Yang S, Lou Z, Han K (2013) A reversible fluorescence probe based on Se-BODIPY for the redox cycle between HClO oxidative stress and H2S repair in living cells. Chem. Commun. (Camb.) 49(10):1014–1016. https://doi.org/10.1039/c2cc37803e

    Article  CAS  Google Scholar 

  33. Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem. Rev. 107(11):4891–4932. https://doi.org/10.1021/cr078381n

    Article  CAS  PubMed  Google Scholar 

  34. Liu Y, Wang S-Q, Zhao B-X (2015) A novel pyrazoline-based fluorescent probe for detecting fluoride ion in water and its application on real samples. RSC Adv. 5(42):32962–32966. https://doi.org/10.1039/c5ra04933d

    Article  CAS  Google Scholar 

  35. Ren J, Wu Z, Zhou Y, Li Y, Xu Z (2011) Colorimetric fluoride sensor based on 1,8-naphthalimide derivatives. Dyes Pigments 91(3):442–445. https://doi.org/10.1016/j.dyepig.2011.04.012

    Article  CAS  Google Scholar 

  36. Bao Y, Liu B, Wang H, Tian J, Bai R (2011) A ‘naked eye’ and ratiometric fluorescent chemosensor for rapid detection of F- based on combination of desilylation reaction and excited-state proton transfer. Chem. Commun. 47(13):3957–3959

    Article  CAS  Google Scholar 

  37. Li G-Y, Chu T (2011) TD-DFT study on fluoride-sensing mechanism of 2-(2 '-phenylureaphenyl)benzoxazole: the way to inhibit the ESIPT process. Phys. Chem. Chem. Phys. 13(46):20766–20771. https://doi.org/10.1039/c1cp21470e

    Article  CAS  PubMed  Google Scholar 

  38. Song P, Ding J-X, Chu T-S (2012) TD-DFT study on the excited-state proton transfer in the fluoride sensing of a turn-off type fluorescent chemosensor based on anthracene derivatives. Spectrochim Acta Part a-Mol Biomol Spectrosc 97:746–752. https://doi.org/10.1016/j.saa.2012.07.010

    Article  CAS  Google Scholar 

  39. Chen J-S, Liu R-Z, Yang Y, Chu T-S (2013) Intramolecular charge transfer and sensing mechanism for a colorimetric fluoride sensor based on 1,8-naphthalimide derivatives. Theor. Chem. Accounts 133(1). https://doi.org/10.1007/s00214-013-1411-3

  40. Chen J-S, Zhou P-W, Li G-Y, Chu T-S, He G-Z (2013) Fluoride anion sensing mechanism of 2-ureido-4 1H -pyrimidinone quadruple hydrogen-bonded supramolecular assembly: photoinduced electron transfer and partial configuration change. J. Phys. Chem. B 117(17):5212–5221. https://doi.org/10.1021/jp4017757

    Article  CAS  PubMed  Google Scholar 

  41. Chen J-S, Zhou P-W, Yang S-Q, Fu A-P, Chu T-S (2013) Sensing mechanism for a fluoride chemosensor: invalidity of excited-state proton transfer mechanism. Phys. Chem. Chem. Phys. 15(38):16183–16189. https://doi.org/10.1039/c3cp51482j

    Article  CAS  PubMed  Google Scholar 

  42. Chen J-S, Zhou P-W, Zhao L, Chu T-S (2014) A DFT/TDDFT study of the excited state intramolecular proton transfer based sensing mechanism for the aqueous fluoride chemosensor BTTPB. RSC Adv. 4(1):254–259. https://doi.org/10.1039/c3ra44900a

    Article  CAS  Google Scholar 

  43. Li Y, Chen J, Chu T-S (2018) Fluoride anion sensing mechanism of a BODIPY-linked hydrogen-bonding probe. J. Comput. Chem. 39(21):1639–1647. https://doi.org/10.1002/jcc.25341

    Article  CAS  PubMed  Google Scholar 

  44. Sakr MAS, Gawad SAA, El-Daly SA, Abou Kana MTH, Ebeid EM (2020) Photophysical and TDDFT investigation for (E, E)-2, 5-bis 2-(4-(dimethylamino)phenyl) ethenyl pyrazine (BDPEP) laser dye in restricted matrices. J. Mol. Struct. 1217:9. https://doi.org/10.1016/j.molstruc.2020.128403

    Article  CAS  Google Scholar 

  45. Kumar J, Kumar N, Hota PK (2020) Optical properties of 3-substituted indoles. RSC Adv. 10(47):28213–28224. https://doi.org/10.1039/d0ra05405d

    Article  CAS  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, KitaoO, Nakai H, Vreven T, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian, Inc., Wallingford CT

  47. Cances E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 107(8):3032–3041

    Article  CAS  Google Scholar 

  48. d’Antuono P, Botek E, Champagne B, Spassova M, Denkova P (2006) Theoretical investigation on H 1 and C 13 NMR chemical shifts of small alkanes and chloroalkanes. J. Chem. Phys. 125(14):144309

    Article  Google Scholar 

  49. Sokkalingam P, Lee C-H (2011) Highly sensitive fluorescence “turn-on” indicator for fluoride anion with remarkable selectivity in organic and aqueous media. J. Organomet. Chem. 76:3820–3828. https://doi.org/10.1021/jo200138t

    Article  CAS  Google Scholar 

  50. Bai T, Chu T (2020) Exploring the simultaneous biothiols-differentiating detecting feature of a BODIPY chemosensor with DFT/TDDFT. J. Mol. Liq. 309. https://doi.org/10.1016/j.molliq.2020.113145

  51. Ooyama Y, Yamaji K, Ohshita J (2017) Photovoltaic performances of type-II dye-sensitized solar cells based on catechol dye sensitizers: retardation of back-electron transfer by PET (photo-induced electron transfer). Mater. Chem. Front. 1(11):2243–2255. https://doi.org/10.1039/c7qm00211d

    Article  CAS  Google Scholar 

  52. Escudero D (2016) Revising intramolecular photoinduced electron transfer (PET) from first-principles. Acc. Chem. Res. 49(9):1816–1824. https://doi.org/10.1021/acs.accounts.6b00299

    Article  CAS  PubMed  Google Scholar 

  53. Ueno T, Urano Y, Setsukinai K, Takakusa H, Kojima H, Kikuchi K, Ohkubo K, Fukuzumi S, Nagano T (2004) Rational principles for modulating fluorescence properties of fluorescein. J. Am. Chem. Soc. 126(43):14079–14085. https://doi.org/10.1021/ja048241k

    Article  CAS  PubMed  Google Scholar 

  54. Ueno T, Urano Y, Kojima H, Nagano T (2006) Mechanism-based molecular design of highly selective fluorescence probes for nitrative stress. J. Am. Chem. Soc. 128(33):10640–10641. https://doi.org/10.1021/ja061972v

    Article  CAS  PubMed  Google Scholar 

  55. Gabe Y, Urano Y, Kikuchi K, Kojima H, Nagano T (2004) Highly sensitive fluorescence probes for nitric oxide based on boron dipyrromethene chromophore-rational design of potentially useful bioimaging fluorescence probe. J. Am. Chem. Soc. 126(10):3357–3367. https://doi.org/10.1021/ja037944j

    Article  CAS  PubMed  Google Scholar 

  56. Kasha M (1950) Characterization of electronic transitions in complex molecules. Discuss. Faraday. Soc. 9:14–19. https://doi.org/10.1039/DF9500900014

    Article  Google Scholar 

  57. Zhao GJ, Liu JY, Zhou LC, Han KL (2007) Site-selective photoinduced electron transfer from alcoholic solvents to the chromophore facilitated by hydrogen bonding: a new fluorescence quenching mechanism. J. Phys. Chem. B 111(30):8940–8945. https://doi.org/10.1021/jp0734530

    Article  CAS  PubMed  Google Scholar 

  58. Ros P, Schuit GCA (1966) Molecular orbital calculations on copper chloride complexes. Theor. Chim. Acta 4(1):1–12. https://doi.org/10.1007/BF00526005

    Article  CAS  Google Scholar 

  59. Pollock JB, Cook TR, Stang PJ (2012) Photophysical and computational investigations of bis(phosphine) organoplatinum(II) metallacycles. J. Am. Chem. Soc. 134:10607–10620. https://doi.org/10.1021/ja3036515

    Article  CAS  PubMed  Google Scholar 

  60. Deng W-Q, Sun L, Huang J-D, Chai S, Wen S-H, Han K-L (2015) Quantitative prediction of charge mobilities of π-stacked systems by first-principles simulation. Nat. Protoc. 10:632. https://doi.org/10.1038/nprot.2015.038https://www.nature.com/articles/nprot.2015.038#supplementary-information

    Article  CAS  PubMed  Google Scholar 

  61. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19(4):553–566

    Article  CAS  Google Scholar 

  62. Zhao G-J, Han K-L (2012) Hydrogen bonding in the electronic excited state. Acc. Chem. Res. 45(3):404–413. https://doi.org/10.1021/ar200135h

    Article  CAS  PubMed  Google Scholar 

  63. Nikolin AA, Kramarova EP, Shipov AG, Baukov YI, Negrebetsky VV, Korlyukov AA, Arkhipov DE, Bowden A, Bylikin SY, Bassindale AR, Taylor PG (2012) Synthesis, structures, and stereodynamic behavior of novel pentacoordinate fluorosilanes: fluorosilyl derivatives of Proline. Organometallics 31:4988–4997. https://doi.org/10.1021/om3002697

    Article  CAS  Google Scholar 

Download references

Code availability

N/A.

Funding

The research leading to these results received funding from the National Natural Science Foundation of China under Grant Agreement No. 10874096 and the Shandong Provincial Natural Science Foundation, China, under the Grant Agreement No. ZR2014AM025.

Author information

Authors and Affiliations

Authors

Contributions

Xiaochen Wang: Conceptualization, Methodology, Writing—Original draft preparation. Tianxin Bai: Conceptualization, Methodology, Software, Visualization, Validation. Tianshu Chu: Conceptualization, Supervision, Funding acquisition, Writing—Reviewing and Editing.

Corresponding author

Correspondence to Tianshu Chu.

Ethics declarations

Ethics approval

N/A.

Consent to participate

N/A.

Consent for publication

N/A.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 580 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Bai, T. & Chu, T. A molecular design for a turn-off NIR fluoride chemosensor. J Mol Model 27, 104 (2021). https://doi.org/10.1007/s00894-021-04716-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04716-1

Keywords

Navigation