Skip to main content

Advertisement

Log in

Monolayer Mo2C as anodes for magnesium-ion batteries

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The adsorption and diffusion behaviors of magnesium (Mg) on monolayer Mo2C have been investigated by the first principles method based on density functional theory (DFT). The structural stability and theoretical capacity of monolayer Mo2C as anodes for magnesium-ion batteries (MIBs) have also been investigated. The results show that Mg prefer to occupy the H and TC sites with the adsorption energies of − 1.439 and − 1.430, respectively, followed by B and TMo sites on Mo2C monolayer. The Mg prefers to diffuse along the H-TC-H path, furthermore, the other two possible paths (along H-B-H and H-TMo-H) also possess quite low energy barrier with the value of about 0.039 eV. The present results demonstrate that the adsorption energy per Mg atom and the volume expansion change mildly. The volume expansions change slightly from 0.7 to 7.08% with the variety of x, ranging from 0.167 to 2.0. The theoretical gravimetric capacity reaches to 469.791 mAhg−1 with relatively small deformation and expansion as x = 2.0. The results mentioned above suggest that Mo2C monolayer is one of the promising candidates for anode material of MIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zou F, Chen YM, Liu K, Yu Z, Liang W, Bhaway SM, Gao M, Zhu Y (2016) Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage. ACS Nano 10:377–386. https://doi.org/10.1021/acsnano.5b05041

    Article  CAS  PubMed  Google Scholar 

  2. Baek SH, Park JS, Jeong YM, Kim JH (2016) Facile synthesis of Ag-coated silicon nanowires as anode materials for high-performance rechargeable lithium battery. J Alloys Compd 660:387–391. https://doi.org/10.1016/j.jallcom.2015.11.131

    Article  CAS  Google Scholar 

  3. Balogun MS, Yang L, Qiu W, Liu P, Tong Y (2016) A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 98:162–178. https://doi.org/10.1016/j.carbon.2015.09.091

    Article  CAS  Google Scholar 

  4. Zhao C, Wang X, Kong J, Ang JM, Lee PS, LiuZ LX (2016) Self-assembly-induced alternately stacked single-layer MoS2 and N-doped graphene: a novel van der Waals heterostructure for lithium-ion batteries. ACS Appl Mater Interfaces 8:2372–2379. https://doi.org/10.1021/acsami.5b11492

    Article  CAS  PubMed  Google Scholar 

  5. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657. https://doi.org/10.1038/451652a

    Article  CAS  Google Scholar 

  6. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935. https://doi.org/10.1126/science.1212741

    Article  CAS  PubMed  Google Scholar 

  7. Tashiro Y, Taniguchi K, Miyasaka H (2016) Copper selenide as a new cathode material based on displacement reaction for rechargeable magnesium batteries. Electrochim Acta 210:655–661. https://doi.org/10.1016/j.electacta.2016.05.202

    Article  CAS  Google Scholar 

  8. Matsui M (2011) Study on electrochemically deposited Mg metal. J Power Sources 196:7048–7055. https://doi.org/10.1016/j.jpowsour.2010.11.141

    Article  CAS  Google Scholar 

  9. Li W, Yang Y, Zhang G, Zhang YW (2015) Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett 15:1691–1697. https://doi.org/10.1021/nl504336h

    Article  CAS  PubMed  Google Scholar 

  10. Wang Z, Su Q, Deng H, He W, Lin J, Fu YQ (2014) Modelling and simulation of electron-rich effect on Li diffusion in group IVA elements (Si, Ge and Sn) for Li ion batteries. J Mater Chem A 2:13976–13982. https://doi.org/10.1039/C4TA01614A

    Article  CAS  Google Scholar 

  11. Zhang H, Cao D, Bai X (2019) High rate performance of aqueous magnesium-ion batteries based on the δ-MnO2@carbon molecular sieves composite as the cathode and nanowire VO2 as the anode. J Power Sources 444:227299. https://doi.org/10.1016/j.jpowsour.2019.227299

    Article  CAS  Google Scholar 

  12. Yang S, Jia F, Wang Z, Zhu Y, Hu K, Ouyang YP, Wang R, Ma X, Cao C (2019) Microwave-assisted synthesis of CuSe nano-particles as a high-performance cathode for rechargeable magnesium batteries. Electrochim Acta 324:134864. https://doi.org/10.1016/j.electacta.2019.134864

    Article  CAS  Google Scholar 

  13. Kravchyk KV, Widmer R, Erni R, Dubey RJC, Krumeich F, Kovalenko MV, Bodnarchuk MI (2019) Copper sulfide nanoparticles as high-performance cathode materials for Mg-ion batteries. Sci Rep 9:7988. https://doi.org/10.1038/s41598-019-43639-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ishibashi C, Mizutani Y, Ishida N, Kitamura N, Idemoto Y (2019) Crystal and electronic structures of MgCo2-xMnxO4 as cathode material for magnesium secondary batteries using first-principles calculations and quantum beam measurements. Bull Chem Soc Jpn 92:1950–1959. https://doi.org/10.1246/bcsj.20190207

    Article  CAS  Google Scholar 

  15. Ni DX, Shi J, Xiong W, Zhong SY, Xu B, Ouyang CY (2019) The effect of protons on the Mg2+ migration in an α-V2O5 cathode for magnesium batteries: a first-principles investigation. Phys Chem Chem Phys 21:7406–7411. https://doi.org/10.1039/C9CP00528E

    Article  CAS  PubMed  Google Scholar 

  16. Vessally E, Alkorta I, Ahmadi S, Mohammadi R, Hosseinian A (2019) A DFT study on nanocones, nanotubes (4, 0), nanosheets and fullerene C, 60, as anodes in Mg-ion batteries. RSC Adv 9:853–862. https://doi.org/10.1039/C8RA06031B

    Article  CAS  Google Scholar 

  17. Chockla AM, Harris JT, Akhavan VA, Bogart TD, Holmberg VC, Steinhagen C, Mullins CB, Stevenson KJ, Korgel BA (2011) Silicon nanowire fabric as a lithium ion battery electrode material. J Am Chem Soc 133:20914–20921. https://doi.org/10.1021/ja208232h

    Article  CAS  PubMed  Google Scholar 

  18. Hong W, Ge P, Jiang Y, Yang L, Tian Y, Zou G, Cao X, Hou H, Ji X (2019) Yolk-shell-structured bismuth@N-doped carbon anode for lithium-ion battery with high volumetric capacity. ACS Appl Mater Interfaces 11:10829–10840. https://doi.org/10.1021/acsami.8b20477

    Article  CAS  PubMed  Google Scholar 

  19. Chan KT, Neaton JB, Cohen ML (2008) First-principles study of metal adatom adsorption on graphene. Phys Rev B 77:235430. https://doi.org/10.1103/physrevb.77.235430

    Article  Google Scholar 

  20. Zhao X, Hayner CM, Kung MC, Kung HH (2011) Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. ACS Nano 5:8739–8749. https://doi.org/10.1021/nn202710s

    Article  CAS  PubMed  Google Scholar 

  21. Shao X, Wang K, Pang R, Shi XQ (2015) Lithium intercalation in graphene/MoS2 composites: first-principles insights. J Phys Chem C 119:10334–10344. https://doi.org/10.1021/acs.jpcc.5b06441

    Article  CAS  Google Scholar 

  22. Wang Z, Chen Q, Wang J (2015) Electronic structure of twisted bilayers of graphene/MoS2 and MoS2/MoS2. J Phys Chem C 119:4752–4758. https://doi.org/10.1021/jp507751p

    Article  CAS  Google Scholar 

  23. Cai Y, Zhang G, Zhang YW (2015) Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures. J Phys Chem C 119:13929–13936. https://doi.org/10.1021/acs.jpcc.5b02634

    Article  CAS  Google Scholar 

  24. Hu J, Xu B, Yang SA, Guan S, Ouyang C, Yao Y (2015) 2D electrides as promising anode materials for Na-ion batteries from first-principles study. ACS Appl Mater Interfaces 7:24016–24022. https://doi.org/10.1021/acsami.5b06847

    Article  CAS  PubMed  Google Scholar 

  25. Çakır D, Sevik C, Gülseren O, Peeters FM (2016) Mo2C as a high capacity anode material: a first-principles study. J Mater Chem A 4:6029–6035. https://doi.org/10.1039/C6TA01918H

    Article  CAS  Google Scholar 

  26. Sun Q, Dai Y, Ma Y, Jing T, Wei W, Huang B (2016) Ab initio prediction and characterization of Mo2C monolayer as anodes for lithium-ion and sodium-ion batteries. J Phys Chem Lett 7:937–943. https://doi.org/10.1021/acs.jpclett.6b00171

    Article  CAS  PubMed  Google Scholar 

  27. Jin W, Wang Z, Fu YQ (2016) Monolayer black phosphorus as potential anode materials for Mg-ion batteries. J Mater Sci 51:7355–7360. https://doi.org/10.1007/s10853-016-0023-4

    Article  CAS  Google Scholar 

  28. Han X, Cheng L, Jie S, Sendek A (2018) Density functional theory calculations for evaluation of phosphorene as a potential anode material for magnesium batteries. RSC Adv 8:7196–7204. https://doi.org/10.1039/C7RA12400G

    Article  CAS  Google Scholar 

  29. Jing Y, Zhou Z, Cabrera CR, Chen Z (2013) Metallic VS2 monolayer: a promising 2D anode material for lithium ion batteries. J Phys Chem C 117:25409–25413. https://doi.org/10.1021/jp410969u

    Article  CAS  Google Scholar 

  30. Yang E, Ji H, Jung Y (2015) Two-dimensional transition metal dichalcogenide monolayers as promising sodium ion battery anodes. J Phys Chem C 119:26374–26380. https://doi.org/10.1021/acs.jpcc.5b09935

    Article  CAS  Google Scholar 

  31. Vakili-Nezhaada GR, Gujarathi AM, Rawahi NA, Mahnaz M (2019) Performance of WS2 monolayers as a new family of anode materials for metal-ion (Mg, Al and Ca) batteries. Mater Chem Phys 230:114–121. https://doi.org/10.1016/j.matchemphys.2019.02.086

    Article  CAS  Google Scholar 

  32. Mortazavi B, Dianat A, Rahaman O, Cuniberti G, Rabczuk T (2016) Borophene as an anode material for Ca, Mg, Na or Li ion storage: a first-principle study. J Power Sources 329:456–461. https://doi.org/10.1016/j.jpowsour.2016.08.109

    Article  CAS  Google Scholar 

  33. Xu C, Wang L, Liu Z, Chen L, Guo J, Kang N, Ma XL, Cheng HM, Ren W (2015) Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat Mater 14:1135–1141. https://doi.org/10.1038/nmat4374

    Article  CAS  PubMed  Google Scholar 

  34. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745–2779. https://doi.org/10.1088/0953-8984/14/11/302

    Article  CAS  Google Scholar 

  35. White JA, Bird DM (1994) Implementation of gradient-corrected exchange-correlation potentials in Car-Parrinello total-energy calculations. Phys Rev B 50:4954–4957. https://doi.org/10.1103/PhysRevB.50.4954

    Article  CAS  Google Scholar 

  36. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/physrevlett.77.3865

    Article  CAS  PubMed  Google Scholar 

  37. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B Condens Matter 43:1993–2006. https://doi.org/10.1103/PhysRevB.43.1993

    Article  CAS  PubMed  Google Scholar 

  38. Drumm DW, Budi A, Per MC, Russo SP, Hollenberg LCL (2013) Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon. Nanoscale Res Lett 8:111. https://doi.org/10.1186/1556-276X-8-111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hammouri M, Jha SK, Vasiliev I (2015) First-principles study of graphene and carbon nanotubes functionalized with benzyne. J Phys Chem C 119:18719. https://doi.org/10.1021/acs.jpcc.5b04065

    Article  CAS  Google Scholar 

  40. Shi W, Wang Z, Li Z, Fu YQ (2016) Electric field enhanced adsorption and diffusion of adatoms in MoS2 monolayer. Mater Chem Phys 183:392–397. https://doi.org/10.1016/j.matchemphys.2016.08.043

    Article  CAS  Google Scholar 

  41. Langreth DC, Mehl MJ (1983) Beyond the local-density approximation in calculations of ground-state electronic properties. Phys Rev B 28:1809. https://doi.org/10.1103/PhysRevB.28.1809

    Article  CAS  Google Scholar 

  42. Sousa SF, Fernandes PA, Ramos MJ (2007) General performance of density functionals. J Phys Chem A 111:10439–10452. https://doi.org/10.1021/jp0734474

    Article  CAS  PubMed  Google Scholar 

  43. Becke AD (1992) Density-functional thermochemistry. II. The effect of the Perdew-Wang generalized gradient correlation correction. J Chem Phys 97:9173. https://doi.org/10.1063/1.463343

    Article  CAS  Google Scholar 

  44. Datta D, Li J, Koratkar N, Shenoy VB (2014) Enhanced lithiation in defective graphene. Carbon 80:305–310. https://doi.org/10.1016/j.carbon.2014.08.068

    Article  CAS  Google Scholar 

  45. Fan K, Tang J, Wu S, Yang C, Hao J (2017) Adsorption and diffusion of lithium in a graphene/blue-phosphorus heterostructure and the effect of an external electric field. Phys Chem Chem Phys 19:267–275. https://doi.org/10.1039/C6CP05983J

    Article  CAS  Google Scholar 

  46. Fu CC, Willaime F, Ordejón P (2004) Stability and mobility of mono- and di-interstitials in alpha-Fe. Phys Rev Lett 92:175503. https://doi.org/10.1103/PhysRevLett.92.175503

    Article  CAS  PubMed  Google Scholar 

  47. Zheng J, Ren Z, Guo P, Fang L, Fan J (2011) Diffusion of Li+ ion on graphene: a DFT study. Appl Surf Sci 258:1651–1655. https://doi.org/10.1016/j.apsusc.2011.09.007

    Article  CAS  Google Scholar 

  48. Guo GC, Wang D, Wei XL, Zhang Q, Liu H, Lau WM, Liu LM (2015) First-principles study of phosphorene and graphene heterostructure as anode materials for rechargeable Li batteries. J Phys Chem Lett 6:5002–5008. https://doi.org/10.1021/acs.jpclett.5b02513

    Article  CAS  PubMed  Google Scholar 

  49. Kent P, Xie Y, Zhuang H, Dall'Agnese Y, Naguib M, Barsoum M, Gogotsi Y (2015) Prediction and characterization of MXenes for non-lithium ion battery anodes. ACS Nano 8:9606–9615. https://doi.org/10.1021/nn503921j

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Scientific Research Foundation of Sichuan Provincial Education Department (17ZA0338), Foundation of Jiangsu Institute of Marine Resources Development (JSIMR201606), and Research Start-up Foundation for Advanced Talents of Jiangsu Ocean University (KQ19021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaimin Fan or Qingqiang Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, K., Tang, J. & Sun, Q. Monolayer Mo2C as anodes for magnesium-ion batteries. J Mol Model 26, 86 (2020). https://doi.org/10.1007/s00894-020-4347-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-4347-2

Keywords

Navigation