Skip to main content
Log in

Li adsorption and diffusion on the surfaces of molybdenum dichalcogenides MoX2 (X = S, Se, Te) monolayers for lithium-ion batteries application: a DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

We study some of the most high performance electrode materials for lithium-ion batteries. These comprise molybdenum dichalcogenide MoX2 (molybdenum disulfide MoS2, molybdenum diselenide MoSe2, molybdenum ditelluride MoTe2). The stability is studied by calculating cohesive energy and formation energy. Structural, electronic, and electrical properties are well defined, and these structures show a direct gap. Lithium adsorption at different sites, theoretical storage capacity, and lithium diffusion path are determined. Our study findings suggest that the adsorption of Li on the preferred site on the surface of the MoX2 monolayer maintains its semiconductor behavior. Comparing the activation energy barrier of these structures with other monolayers such as graphene or silicene, we found that MoX2 shows low lithium diffusion energy and good storage capacity, which indicates that the MoX2 is well suited as an anode material for lithium-ion batteries. Our research can offer new ideas for experimental and theoretical design and new anode materials for lithium-ion batteries (LIB).

Methods

The studies were performed with Quantum ESPRESSO package based on density functional theory (DFT), plane waves, and pseudopotentials (PWSCF) to calculate the physical properties of MoX2 (X = S, Se, Te), lithium adsorption, and diffusion on their surfaces and the storage capacity of these structures. The BoltzTraP code is used to calculate thermoelectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

This article does not contain any supporting information as most of the important data are already provided in the manuscript.

References

  1. He Q, Yu B, Li Z, Zhao Y (2019). Energy Environ Mater 2:264–279

    Article  CAS  Google Scholar 

  2. Kumar MR, Singh S (2023). J Mol Model 29:193

    Article  CAS  PubMed  Google Scholar 

  3. Rahimi R, Solimannejad M (2020). J Mol Model 26:157. https://doi.org/10.1007/s00894-020-04418-0

    Article  CAS  PubMed  Google Scholar 

  4. Bhuvaneswari R, Nagarajan V, Chandiramouli R (2019). Mater Res Express 6:035504

    Article  Google Scholar 

  5. Belasfar K, El Kenz A, Benyoussef A (2021). Mater Chem Phys 257:123751

    Article  CAS  Google Scholar 

  6. Kulova T, Gryzlov D, Skundin A, Gavrilin I, Kudryashova Y, Pokryshkin N (2021). Int J Electrochem Sci 16:211229

    Article  CAS  Google Scholar 

  7. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012). Nat Nanotechnol 7(11):699

    Article  CAS  PubMed  Google Scholar 

  8. Ersan F, Ozaydin HD, Gddotokoglu G, Aktddoturk E (2017). Appl Surf Sci 425:301–306

    Article  CAS  Google Scholar 

  9. Ruppert C, Burak AO, Heinz TF (2014). Nano Lett 14(11):6231–6236

    Article  CAS  PubMed  Google Scholar 

  10. Goodenough JB, Kim Y (2010). Chem Mater 22(3):587–603

    Article  CAS  Google Scholar 

  11. Cheng C, Zhou G, Du J, Zhang H, Guo D, Li Q, Wei W, Chen L (2014). New J Chem 38:2250

    Article  CAS  Google Scholar 

  12. Ataca C (2012) ahin H Ş, and CiraciStable S. J Phys Chem C 116:8983–8999

    Article  CAS  Google Scholar 

  13. Khuili M, El Hallani G, Fazouan N, Atmani EH, Allaoui I, Al-Qaisi S, Abba EH, Lekouch K (2023). Int J Mod Phys B 37:2350210

    Article  CAS  Google Scholar 

  14. Khuili M, Bounbaa M, Fazouan N, Elmakarim HA, Sadiki Y, Al-Qaisi S, Allaoui I, Maskar EH, Chahid EH, Maher K, Abba EH (2023). J Solid State Chem 322:123955

    Article  CAS  Google Scholar 

  15. Khuili M, Fazouan N, Makarim HAE, Atmani EH, Abbassi A, Rai DP (2020). Superlattice Microst 145:106645

    Article  CAS  Google Scholar 

  16. F Xiaozhen, , Xing L, Zhenglin H et al. J Mol Model 28, 225 (2022).

    Article  PubMed  Google Scholar 

  17. Nagarajan V, Ramesh R, Chandiramouli R (2023) Comput. Theor Chem 121:108449

    CAS  Google Scholar 

  18. Bhuvaneswari R, Nagarajan V, Chandiramouli R (2019). Phys B Condens Matter 562:75–81. https://doi.org/10.1016/j.physb.2019.03.022

    Article  CAS  Google Scholar 

  19. Sharma NK, Kapila A, Vivek V, Sharma H (2022). Mater Today Sustain 20:100248

    Article  Google Scholar 

  20. Reyes-Retana JA, Cervantes-Sodi F (2016). Sci Rep 6:24093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu T, Li R, Dong J (2013). J Chem Phys 139:174702

    Article  PubMed  Google Scholar 

  22. Wypych F, Schöllhorn R (1992). J Chem Soc Chem Commun 19:1386–1388

    Article  Google Scholar 

  23. Nagarajan V, Ramesh R, Chandiramouli R (2023). J Mol Model 29:309. https://doi.org/10.1007/s00894-023-05711-4

    Article  CAS  PubMed  Google Scholar 

  24. Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008). Phys Rev Lett 100:136406

    Article  PubMed  Google Scholar 

  25. Giannozzi P et al (2009). J Phys Condens Matter 21(39):395502

    Article  PubMed  Google Scholar 

  26. Madsen GKH, Singh DJ (2006). Comput Phys Commun 175:67–71

    Article  CAS  Google Scholar 

  27. Ye C, Liu M (2022). J Mol Model 28:40

    Article  CAS  PubMed  Google Scholar 

  28. Fedorov V E, Mirzaeva I V, Kozlova S G, Grayfer E D, Medvedev M V, Conference: MIPRO, 2012 Proceedings of the 35th International Convention

  29. Ding Y, Wang Y, Ni J, Shi L, Shi S, Tang W (2011). Physica B 406:2254–2260

    Article  CAS  Google Scholar 

  30. Lahourpour F, Boochani A, Parhizgar SS, Elahi SM (2019). J Theor Appl Phys 13:191–201

    Article  Google Scholar 

  31. Tang W, Sanville E, Henkelman G (2009). J Phys Condens Matter 21:084204

    Article  CAS  PubMed  Google Scholar 

  32. Belasfar K, Houmad M, Boujnah M, Benyoussef A, EL Kenz A (2020). J Phys Chem Solids 139:109319

    Article  CAS  Google Scholar 

  33. Jing Y, Zhou Z, Cabrera CR, Chen Z (2013). J Phys Chem C 117(48):25409–25413

    Article  CAS  Google Scholar 

  34. Zhao S, Kang W, Xue J (2014). J Mater Chem 2(44):19046–19052

    Article  CAS  Google Scholar 

  35. Er D, Li J, Naguib M, Gogotsi Y, Shenoy VB (2014). ACS Appl Mater Interfaces 6(14):11173–11179

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

(MB, MK, NF) were participated in investigations and (EHA, AI, MH) in supervising. Each of the authors has made contributions and has reached a consensus on the final version of the manuscript for publication.

Corresponding author

Correspondence to Mohamed Khuili.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bounbaâ, M., Khuili, M., Fazouan, N. et al. Li adsorption and diffusion on the surfaces of molybdenum dichalcogenides MoX2 (X = S, Se, Te) monolayers for lithium-ion batteries application: a DFT study. J Mol Model 29, 378 (2023). https://doi.org/10.1007/s00894-023-05787-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05787-y

Keywords

Navigation