Skip to main content

Advertisement

Log in

Computational studies on nitro derivatives of BN indole as high energetic material

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Nitrogen-rich heterocycles and their nitro derivatives are one of the important classes of energetic materials. In the present study, the computational methods have been applied to determine the thermodynamic and detonation properties of nitro derivatives of BN indole molecule. Structure optimization and electronic energy of the designed molecules are determined using the density functional theory. The gas-phase heat of formation of the species concerned is determined by the atomization method. Wave function analysis-surface analysis suite (WFA-SAS) has been applied to determine the condensed phase heat of formation and crystal density of designed molecules. Bond dissociation energy (BDE) is determined to identify the trigger bond. The energy gap between highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) has been calculated to predict the stability of the molecule. Impact sensitivity and detonation properties of designed species are calculated. The calculated parameters show that among all the designed molecules, the molecule A6 (1,2,3,5,6,7-Hexanitrobnindole) has the properties to be considered as a high density energetic molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Eaton PE, Gilardi RL, Zhang M-X (2000) Polynitrocubanes: advanced high-density, high - energy materials. Adv Mater 12:1143–1148

    CAS  Google Scholar 

  2. Gutowski KE, Rogers RD, Dixon DA (2006) Accurate thermochemical properties for energetic materials applications. I Heats of formation of nitrogen-containing heterocycles and energetic precursor molecules from electronic structure theory. J Phys Chem A 110:11890–11897

    CAS  PubMed  Google Scholar 

  3. Qiu L, Xiao HM, Gong XD, Ju XH, Zhu W (2006) Theoretical studies on the structures, thermodynamic properties, detonation properties and pyrolysis mechanism of spironitramines. J Phys Chem A 110:3797–3807

    CAS  PubMed  Google Scholar 

  4. Wang G, Gong XD, Liu Y, Du HC, Xu XJ, Xiao HM (2010) A theoretical investigation on the structures, densities, detonation properties and pyrolysis mechanism of the nitro derivatives of toluenes. J Hazard Mater 177:703–710

    CAS  PubMed  Google Scholar 

  5. Zhang JG, Niu XQ, Zhang SW, Zhang TL, Huang HS, Zhou ZN (2011) Novel potential high-nitrogen-content energetic compounds: theoretical study of diazido-tetrazole (CN10). Comput Theor Chem 964:291–297

    CAS  Google Scholar 

  6. Singh HJ, Mukherjee U, Saini R (2012) Computational studies on nitro derivatives of 1-hydroxy-1,2,4-triazole. J Energ Mater 30:265–281

    CAS  Google Scholar 

  7. Ghule VD, Srinivas D, Sarangapani R, Jadhav PM, Tiwari SP (2012) Molecular design of aminopolynitroazole-based high-energy materials. J Mol Model 18:3013–3020

    CAS  PubMed  Google Scholar 

  8. Zhang JY, Du HC, Wang F, Gong XD, Huang YS (2011) DFT studies on a high energy density cage compound, 4-trinitroethyl-2,6,8,10,12-pentanitrohezaazaisowurtzitane. J Phys Chem A 115:6617–6621

    CAS  PubMed  Google Scholar 

  9. Xu XJ, Zhu WH, Xiao HM (2008) Theoretical predictions on the structures and properties for polynitrohexaazaadamantanes (PNHAAs) as potential high energy density compounds (HEDCs). J Mol Struct (THEOCHEM) 853:1–6

    CAS  Google Scholar 

  10. Fau S, Bartlett RJ (2001) Possible products of the end-on addition of N3 to N5+ and their stability. J Phys Chem A 105(16):4096–4106

    CAS  Google Scholar 

  11. Smiglak M, Metlen A, Rogers RD (2007) The second evolution of ionic liquids: from solvents and separations to advanced materials-energetic examples from the ionic liquid cookbook. Acc Chem Res 40:1182–1192

    CAS  PubMed  Google Scholar 

  12. Wang GX, Gong XD, Liu Y, Du HC, Xu XJ, Xiao HM (2011) Looking for high energy density compounds applicable for propellant among the derivatives of DPO with –N3, –NO2, –ONO2 and –NNO2 groups. J Comput Chem 32:943–952

    PubMed  Google Scholar 

  13. Pagoria PF, Lee GS, Mitchell AR, Schmidt RD (2002) A review of energetic materials synthesis. Thermochim Acta 384:187–204

    CAS  Google Scholar 

  14. Kamlet MJ, Adolph HG (1979) The relationship of impact sensitivity with structure of organic high explosives. II Polynitroaromatic explosives. Propellants Explos Pyrotech 4:30–34

    CAS  Google Scholar 

  15. Murray JS, Lane P, Politzer P (1995) Relationship between impact sensitivities and molecular surface electrostatic potentials of nitroaromatic and nitroheterocyclic molecules. Mol Phys 85:1–8

    CAS  Google Scholar 

  16. Murray JS, Lane P, Politzer P (1998) Effects of strongly electron-attracting components on the molecular surface electrostatic potentials. Application to predicting the impact sensitivities of energetic molecules. Mol Phys 93:187–194

    CAS  Google Scholar 

  17. Rice BM, Hare JJ (2002) A quantum mechanical investigation of the relation between the impact sensitivity and charge distribution in energetic molecules. J Phys Chem A 106:1770–1783

    CAS  Google Scholar 

  18. Wu W-J, Chi W-J, Li Q-S, Ji J-N, Li Z-S (2016) Strategy of improving the stability and detonation performance for energetic material by introducing the boron atoms. J Phys Org Chem 30:e3699

    Google Scholar 

  19. Wu W-J, Chi W-J, Li Q-S, Li Z-S (2017) Strategy for designing stable and powerful nitrogen-rich high-energy materials by introducing boron atoms. J Mol Model 23:191

    PubMed  Google Scholar 

  20. Abbey ER, Zakharov LN, S-Yuan L (2011) Boron in disguise: the parent “fused” BN-indole. J Am Chem Soc 133:11508–11511

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02. Gaussian, Inc, Wallingford

    Google Scholar 

  22. Chen ZX, Xiao JM, Xiao HM, Chiu YN (1999) Studies on heats of formation for tetrazole derivatives with density functional theory B3LYP method. J Phys Chem A 103:8062–8066

    CAS  Google Scholar 

  23. Chen PC, Chieh YC, Tzeng SC (2003) Density functional calculations of the heats of formation for various aromatic nitro compounds. J Mol Struct THEOCHEM 634:215–224

    CAS  Google Scholar 

  24. Li M, Xu H, Wu F (2014) Computational studies on the energetic properties of polynitroxanthines. J Mol Model 20:2204–2211

    PubMed  Google Scholar 

  25. Duan XM, Song GL, Li ZH, Wang XJ, Chen GH, Fan KN (2004) Accurate prediction of heat of formation by combining Hartree-Fock/density functional theory calculation with linear regression correction approach. J Chem Phys 121:7086–7095

    CAS  PubMed  Google Scholar 

  26. Shu Y, Li H, Gao S, Xiong Y (2013) Theoretical studies on densities, stability and detonation properties of 2D polymeric complexes Cu (DAT)2Cl2 and its new analogues Zn (DAT)2Cl2. J Mol Model 19:1583–1590

    CAS  PubMed  Google Scholar 

  27. Singh HJ, Upadhyay MK (2013) Nitro derivatives of 1,3,5-triazepine as potential high energy materials. J Energ Mater 31:301–313

    CAS  Google Scholar 

  28. Nicolaides A, Rauk A, Glukhovtsev MN, Radom L (1996) Heats of formation from G2, G2(MP2), and G2(MP2,SVP) total energies. J Phys Chem 100:17460–17464

    CAS  Google Scholar 

  29. Wagman DD, Evans WH, Parker VB, Schumm RH, Halows I, Bailey SM, Churney KL, Nuttall RN (1982) The NBS tables of chemical thermodynamic properties: selected values for inorganic and C1 and C2 organic substances in SI units. J Phys Chem Ref Data 11(Suppl. 2) (https://srd.nist.gov/JPCRD/jpcrdS2Vol11.pdf)

  30. Byrd EFC, Rice BM (2006) Improved prediction of heats of formation of energetic materials using quantum mechanical calculations. J Phys Chem A 110:1005–1013

    CAS  PubMed  Google Scholar 

  31. Politzer P, Murray JS, Grice ME, DeSalvo M, Miller E (1997) Calculation of heats of sublimation and solid phase heats of formation. Mol Phys 91:923

    CAS  Google Scholar 

  32. Politzer P, Lane P, Concha MC (2003) In: Politzer P, Murray JS (eds) Energetic materials: part I, decomposition, crystal and molecular properties. Amsterdam, Elsevier Chapter 9

    Google Scholar 

  33. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbe A (2009) An electrostatic interaction correction for improved crystal density prediction. J Mol Phys 107:2095–2101

    CAS  Google Scholar 

  34. Kamlet MJ, Jacobs SJ (1968) Chemistry of detonations. I A Simple Method for Calculating Detonation Properties of CHNO Explosives. J Chem Phys 48:23–35

    CAS  Google Scholar 

  35. Sorin B, Laurence EF, Kurt RG, Howard WM, I-Feng WK, Souers PC, Vitello PA (2012) Lawrence Livermore National Laboratory

  36. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679–1691

    CAS  PubMed  Google Scholar 

  37. Blanksby SJ, Ellison GB (2003) Bond dissociation energies of organic molecules. Acc Chem Res 36:255–263

    CAS  PubMed  Google Scholar 

  38. Pospišil M, Vávra P, Concha MC, Murray JS, Politzer P (2010) A possible crystal volume factor in the impact sensitivities of some energetic compounds. J Mol Model 16:895–901

    PubMed  Google Scholar 

  39. Frisch A, Nielsen AB, Holder AJ (2000) Gauss-view user’s manual. Gaussian Inc, Wallingford

    Google Scholar 

  40. Singh HJ, Gupta S, Sengupta SK (2014) Computational studies on nitramino derivatives of 1-amino-1,2-azaboriridine as high energetic material. RSC Adv 4:40534–40541

    CAS  Google Scholar 

  41. Politzer P, Murray JS (2016) High performance, low sensitivity: conflicting or compatible? Propellants, explosives. Pyrotechnics. 41:414–425

    CAS  Google Scholar 

  42. Islam MJ, Kumer A, Sarker N, Paul S, Zannat A (2019) The prediction and theoretical study for chemical reactivity, thermophysical and biological activity of morpholinium nitrate and nitrite ionic liquid crystals: a DFT Study. Adv J Chem Sect A 2:316–326

    CAS  Google Scholar 

  43. Kuklja MM (2001) Thermal decomposition of solid cyclotrimethylene trinitramine. J Phys Chem B 105:10159–10162

    CAS  Google Scholar 

  44. Song XS, Cheng XL, Yang XD, He B (2006) Relationship between the bond dissociation energies and impact sensitivities of some nitro explosives. Propellants Explos Pyrotech 31:306–310

    CAS  Google Scholar 

  45. Talawar MB, Sivabalan R, Mukundan T, Muthurajan H, Sikder AK, Gandhe BR, Rao AS (2009) Environmentally compatible next generation green energetic materials (GEMs) J. Hazard Mater 161:589

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Head of the Department of Chemistry, DDU Gorakhpur University, for providing the necessary computational facilities.

Funding

One of the authors S.G. is thankful to DST-SERB, New Delhi, for financial support under its National Post-Doctoral Fellowship (NPDF) Scheme No. PDF/2016/003586.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Singh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Singh, H.J. Computational studies on nitro derivatives of BN indole as high energetic material. J Mol Model 26, 83 (2020). https://doi.org/10.1007/s00894-020-4337-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-4337-4

Keywords

Navigation