Skip to main content

Advertisement

Log in

Two-dimensional MnC as a potential anode material for Na/K-ion batteries: a theoretical study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Sodium (Na)-ion batteries (NIBs) and potassium (K)-ion batteries (KIBs) have grabbed great attention because they are cheaper, more abundant in earth, and safer alternatives of lithium-ion batteries. However, the lack of anode materials for NIBs/KIBs with good performance has been the main obstacle. In this paper, we studied monolayer MnC by carrying out calculations on the basis of first principle study to see if it can be a potential anode material for NIBs and KIBs. Calculation results show that monolayer MnC processes good negative adsorption energies of − 2.83 eV for Na and − 2.16 eV for K. Moreover, MnC has comparable theoretical capacities for Na and K of 475 mAh/g and 253 mAh/g, respectively. Our calculation results manifest that the MnC can be a promising anode material for NIBs.

MnC monolayer absorbed with two layers of Na atoms

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Larcher D, Tarascon JM (2014) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7(1):19–29

    Article  PubMed  Google Scholar 

  2. Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19(3):291–312

    Article  CAS  Google Scholar 

  3. Whittingham MS (2008) Materials challenges facing electrical energy storage. MRS Bull 33(4):411–419

    Article  CAS  Google Scholar 

  4. Zhang D, Zhou Y, Liu C, Fan S (2016) The effect of the carbon nanotube buffer layer on the performance of a Li metal battery. Nanoscale 8(21):11161–11167

    Article  CAS  PubMed  Google Scholar 

  5. Li W, Yang Y, Zhang G, Zhang Y-W (2015) Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett 15(3):1691–1697

    Article  PubMed  Google Scholar 

  6. Yu T, Zhang S, Li F, Zhao Z, Liu L, Xu H, Yang G (2017) Stable and metallic two-dimensional TaC2 as an anode material for lithium-ion battery. J Mater Chem A 5(35):18698–18706

    Article  CAS  Google Scholar 

  7. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176

    Article  CAS  PubMed  Google Scholar 

  8. Yu T, Zhao Z, Liu L, Zhang S, Xu H, Yang G (2018) TiC3 monolayer with high specific capacity for sodium-ion batteries. J Am Chem Soc 140(18):5962–5968

    Article  CAS  PubMed  Google Scholar 

  9. Wang D, Gao Y, Liu Y, Gogotsi Y, Meng X, Chen G, Wei Y (2017) Investigation of chloride ion adsorption onto Ti2C MXene monolayers by first-principles calculations. J Mater Chem A 5(47):24720–24727

    Article  CAS  Google Scholar 

  10. Liu C-S, Yang X-L, Liu J, Ye X-J (2018) Theoretical prediction of two-dimensional SnP3 as a promising anode material for Na-ion batteries. ACS Appl Energy Mat 1(8):3850–3859

    Article  CAS  Google Scholar 

  11. Mukherjee S, Kavalsky L, Singh CV (2018) Ultrahigh storage and fast diffusion of Na and K in blue phosphorene anodes. ACS Appl Mater Interfaces 10(10):8630–8639

    Article  CAS  PubMed  Google Scholar 

  12. Mukherjee S, Singh G (2019) Two-dimensional anode materials for non-lithium metal-ion batteries. ACS Appl Energy Mat

  13. Pan H, Hu Y-S, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6(8):2338

    Article  CAS  Google Scholar 

  14. Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23(8):947–958

    Article  CAS  Google Scholar 

  15. Bie X, Kubota K, Hosaka T, Chihara K, Komaba S (2017) A novel K-ion battery: hexacyanoferrate (II)/graphite cell. J Mater Chem A 5(9):4325–4330

    Article  CAS  Google Scholar 

  16. Shi L, Zhao TS, Xu A, Xu JB (2016) Ab initio prediction of a silicene and graphene heterostructure as an anode material for Li- and Na-ion batteries. J Mater Chem A 4(42):16377–16382

    Article  CAS  Google Scholar 

  17. Er D, Li J, Naguib M, Gogotsi Y, Shenoy VB (2014) Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl Mater Interfaces 6(14):11173–11179

    Article  CAS  PubMed  Google Scholar 

  18. Sannyal A, Zhang Z, Gao X, Jang J (2018) Two-dimensional sheet of germanium selenide as an anode material for sodium and potassium ion batteries: first-principles simulation study. Comput Mater Sci 154:204–211

    Article  CAS  Google Scholar 

  19. Zhou Y, Li J (2018) Theoretical predication of a two-dimensional structure of non-layered ScC as an excellent electrode material for rechargeable Na-ion battery. Appl Surf Sci 462:417–422

    Article  CAS  Google Scholar 

  20. Xie Y, Dall’Agnese Y, Naguib M, Gogotsi Y, Barsoum MW, Zhuang HL, Kent PR (2014) Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano 8(9):9606–9615

    Article  CAS  PubMed  Google Scholar 

  21. Share K, Cohn AP, Carter R, Rogers B, Pint CL (2016) Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes. ACS Nano 10(10):9738–9744

    Article  CAS  PubMed  Google Scholar 

  22. Sultana I, Rahman MM, Ramireddy T, Chen Y, Glushenkov AM (2017) High capacity potassium-ion battery anodes based on black phosphorus. J Mater Chem A 5(45):23506–23512

    Article  CAS  Google Scholar 

  23. Ladha DG (2019) A review on density functional theory–based study on two-dimensional materials used in batteries. Mat Today Chem 11:94–111

    Article  CAS  Google Scholar 

  24. Olha Mashtalir MN, Mochalin VN, Dall’Agnese Y, Heon M, Barsoum MW, Gogotsi Y (2013) Intercalation and delamination of layered carbides and carbonitrides. Nat Commun 4 No. 1716

  25. Halim J, Kota S, Lukatskaya MR, Naguib M, Zhao M-Q, Moon EJ, Pitock J, Nanda J, May SJ, Gogotsi Y, Barsoum MW (2016) Synthesis and characterization of 2D molybdenum carbide (MXene). Adv Funct Mater 26(18):3118–3127

    Article  CAS  Google Scholar 

  26. Lukatskaya MR, Mashtalir O, Ren CE, Dall’Agnese Y, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y (2013) Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153):1502–1505

    Article  CAS  PubMed  Google Scholar 

  27. C. Zhan, W. Sun, Y. Xie, D. Jiang, P. Kent, Computational discovery and design of MXenes for energy applications: status, successes, and opportunities, ACS applied materials & interfaces (2019)

    Google Scholar 

  28. Zhu J, Schwingenschlögl U (2017) P and Si functionalized MXenes for metal-ion battery applications. 2D Mat 4(2):025073

    Article  Google Scholar 

  29. Eunjeong Yang HJ, Kim J, Kim H, Jung Y (2015) Exploring the possibilities of two-dimensional transition metal carbides as anode materials for sodium batteries. Phys Chem Chem Phys 17:5000–5005

    Article  PubMed  Google Scholar 

  30. Zhang B, Huang Y, Bao W, Wang B, Meng Q, Fan L, Zhang Q (2018) Two-dimensional stable transition metal carbides (MnC and NbC) with prediction and novel functionalizations. Phys Chem Chem Phys 20(39):25437–25445

    Article  CAS  PubMed  Google Scholar 

  31. Zhang RQ, Liu XM, Wen Z, Jiang Q (2015) Prediction of silicon nanowires as photocatalysts for water splitting: band structures calculated using density functional theory. J Phys Chem C 115(8):3425–3428

    Article  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  CAS  PubMed  Google Scholar 

  33. Grimme S (2010) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799

    Article  Google Scholar 

  34. Halgren TA, Lipscomb WN (1977) The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem Phys Lett 49(2):225–232

    Article  CAS  Google Scholar 

  35. Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105(22):9982–9985

    Article  CAS  Google Scholar 

  36. Vineyard GH (1957) Frequency factors and isotope effects in solid state rate processes. J Phys Chem Solids 3(1–2):121–127

    Article  CAS  Google Scholar 

  37. Kutner R (1981) Chemical diffusion in the lattice gas of non-interacting particles. Phys Lett A 81(4):239–240

    Article  Google Scholar 

  38. Samad A, Shafique A, Shin Y-H (2017) Adsorption and diffusion of mono, di, and trivalent ions on two-dimensional TiS2. Nanotechnology 28(17):175401

    Article  PubMed  Google Scholar 

  39. Jiang H, Zhao T, Ren Y, Zhang R, Wu M (2017) Ab initio prediction and characterization of phosphorene-like SiS and SiSe as anode materials for sodium-ion batteries. Sci Bull 62(8):572–578

    Article  CAS  Google Scholar 

  40. Jiang H, Shyy W, Liu M, Wei L, Wu M, Zhao T (2017) Boron phosphide monolayer as a potential anode material for alkali metal-based batteries. J Mater Chem A 5(2):672–679

    Article  CAS  Google Scholar 

  41. Wang D, Liu Y, Meng X, Wei Y, Zhao Y, Pang Q, Chen G (2017) Two-dimensional VS 2 monolayers as potential anode materials for lithium-ion batteries and beyond: first-principles calculations. J Mater Chem A 5(40):21370–21377

    Article  CAS  Google Scholar 

  42. Putungan DB, Lin S-H, Kuo J-L (2016) Metallic VS2 monolayer polytypes as potential sodium-ion battery anode via ab initio random structure searching. ACS Appl Mater Interfaces 8(29):18754–18762

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant No. 61774023) and the Scientific and Technological Development Project of Jilin Province, China (Grant No. 20190101008JH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Hou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Wang, H., Li, H. et al. Two-dimensional MnC as a potential anode material for Na/K-ion batteries: a theoretical study. J Mol Model 26, 66 (2020). https://doi.org/10.1007/s00894-020-4326-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-4326-7

Keywords

Navigation