Skip to main content
Log in

On the nature of the interaction of copper hydride and halide with substituted ethylene and acetylene

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The association of Cu–X (X = –H, –Cl, and –F) with H2CCHCHmYn and HCCCHmYn (Y = –Cl, –F, –OH, –CH3) has been studied at a high level of theory. The density functional theory (DFT) at B3LYP/6-311G(d,p)//B3LYP/6-311 + G(3df,2p) level has been chosen to calculate the structure and the relative stability of 24 different complexes. The interaction of Cu–F with the derivatives of ethylene and acetylene was found very strong, with interaction energies close to those of conventional covalent bonds. In all complexes, the most stable structure was found when Cu–X is positioned on the unsaturated CC bond, forming a three-membered ring that leads to longer CC bond distances. Both ethylene and acetylene complexes show similar trends of interaction energies with respect to the same moiety. All electronic indexes analyzed by means of the QTAIM, ELF, and NBO formalisms indicate that the strength of the interaction should increase with the number of withdrawing substituents in both series of compounds.

The p-Interaction of ethylene and acetylene derivative with fluoride copper. The ELF graphs and its 2D projection show the disynaptic basins of the electrostatic binding

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Du X, Fan R, Wang X, Qiang L, Wang P, Gao S, Zhang H, Yang Y, Wang Y (2015) Combined effect of hydrogen bonding and π···π stacking interactions in the assembly of indium(III) metal-organic materials: structure-directing and aggregation-induced emission behavior. Crystal Growth and Design 15(5):2402–2412

    Article  CAS  Google Scholar 

  2. Moncho S, Brothers EN, Hall MB (2015) Addition of ethylene to a π-conjugated two-dimensional nickel-based organometallic framework with implications for olefin separation. J. Mol. Mod. 21(5)

  3. Sakamoto R, Wu KH, Matsuoka R, Maeda H, Nishihara H (2015) π-Conjugated bis(terpyridine)metal complex molecular wires. Chem. Soc. Rev. 44(21):7698–7714

    Article  CAS  Google Scholar 

  4. Yamabe K, Nomura N, Goto H (2019) Biological quorum sensing molecule-metal complex produces π-conjugated polymer. Inter. J. Poly. Mat. Poly. Biomat. 68(13):805–809

    Article  CAS  Google Scholar 

  5. Barrientos L, Miranda-Rojas S, Mendizabal F (2019) Noncovalent interactions in inorganic supramolecular chemistry based in heavy metals. Quantum chemistry point of view. Int. J. Quant. Chem. 119(2)

  6. Oliveira V, Cremer D (2017) Transition from metal-ligand bonding to halogen bonding involving a metal as halogen acceptor a study of Cu, Ag, Au, Pt, and Hg complexes. Chem. Phys. Lett. 681:56–63

    Article  CAS  Google Scholar 

  7. Lamsabhi AM, Alcamí M, Mó O, Yáñez M (2003) Gas-phase reactivity of uracil, 2-thiouracil, 4-thiouracil, and 2,4-dithiouracil towards the Cu+ cation: a DFT study. ChemPhysChem 4(9):1011–1016

    Article  CAS  Google Scholar 

  8. Lamsabhi AM, Alcamí M, Mó O, Yáñez M, Tortajada J (2004) Association of Cu2+ with uracil and its thio derivatives: a theoretical study. ChemPhysChem 5(12):1871–1878

    Article  CAS  Google Scholar 

  9. Lamsabhi AM, Alcamí M, Mó O, Yáñez M, Tortajada J (2006) Gas-phase deprotonation of uracil-Cu2+ and thiouracil-Cu2+ complexes. J. Phys. Chem. A 110(5):1943–1950

    Article  CAS  Google Scholar 

  10. Kaur K, Sharma A, Capalash N, Sharma P (2019) Multicopper oxidases: biocatalysts in microbial pathogenesis and stress management. Microbiol. Res. 222:1–13

    Article  CAS  Google Scholar 

  11. Abed F, Rayah H, Bouamrane R, Al-Taiar AH (2015) Spectroscopic studies of charge transfer complexes of some amino acids with copper (II). Oriental J. Chem. 31(1):493–497

    Article  Google Scholar 

  12. De Gregorio G, Biasotto F, Hecel A, Luczkowski M, Kozlowski H, Valensin D (2019) Structural analysis of copper(I) interaction with amyloid β peptide. J. Inorg. Biochem. 195:31–38

    Article  Google Scholar 

  13. Li XW, Zhao XH, Li YT, Wu ZY (2019) Synthesis and crystal structure of bicopper(II) complexes: the influence of bridging ligands on DNA/BSA binding behaviors and in vitro antitumor activity. Inorg. Chim. Acta 488:219–228

    Article  CAS  Google Scholar 

  14. Arslancan S, Lamsabhi AM, Mó O, Yáñez M (2018) Complexes between cyclopentene and cyclopentyne derivatives with HCu and FCu: the importance of cyclization effects. Int. J. Quantum Chem. 118(9):e25489

    Article  Google Scholar 

  15. Sánchez-Sanz G, Alkorta I, Elguero J, Yáñez M, Mó O (2012) Strong interactions between copper halides and unsaturated systems: new metallocycles? Or the importance of deformation. Phys. Chem. Chem. Phys. 14(32):11468

    Article  Google Scholar 

  16. Becke AD (1993) Density-functional thermochesmistry. 3. The role of exact exchange. J. Chem. Phys. 98(7):5648–5652

    Article  CAS  Google Scholar 

  17. Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys. Rev. B 37(2):785–789

    Article  CAS  Google Scholar 

  18. Inada Y, Orita H (2007) Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes: evidence of small basis set superposition error compared to Gaussian basis sets. J. Comput. Chem., vol 29. John Wiley & Sons, Ltd.

  19. Kobko N, Dannenberg JJ (2001) Effect of basis set superposition error (BSSE) upon ab initio calculations of organic transition states. J. Phys. Chem. A 105(10):1944–1950

    Article  CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Frisch H, Trucks MJ, Schlegel GW, Scuseria HB, Robb GE, Cheeseman MA, Scalmani JR, Barone G, Mennucci V, Petersson B, Nakatsuji GA, Caricato H, Li M, Hratchian X, Izmaylov HP, Bloino AF, Zheng J, Sonnenberg G, Hada JL, Ehara M, Toyota M, Fukuda K, Hasegawa R, Ishida J, Nakajima M, Honda T, Kitao Y, Nakai O, Vreven H, Montgomery TJ, Peralta JA, Ogliaro JE, Bearpark F, Heyd M, Brothers JJ, Kudin E, Staroverov KN, Kobayashi VN, Normand R, Raghavachari J, Rendell K, Burant A, Iyengar JC, Tomasi SS, Cossi J, Rega M, Millam N, Klene JM, Knox M, Cross JE, Bakken JB, Adamo V, Jaramillo C, Gomperts J, Stratmann R, Yazyev RE, Austin O, Cammi AJ, Pomelli R, Ochterski C, Martin JW, Morokuma RL, Zakrzewski K, Voth VG, Salvador GA, Dannenberg P, Dapprich JJ, Daniels S, Farkas AD, Foresman Ö, Ortiz JB, Cioslowski JV, Fox J (2017) Gaussian 09. Revision E01 edn. Gaussian Inc,, Wallingford, CT

  21. Bader RFW (1990) Atoms in molecules. Clarendon Press, Oxford

    Google Scholar 

  22. Matta CF, Boyd RJ (eds) (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  23. Becke AD, Edgecombe KE (1990) A simple measure of electron localization n atomic and molecular-systems. J. Chem. Phys. 92:5397–5403

    Article  CAS  Google Scholar 

  24. Weinhold F, R Landis C (2005) Valency and bonding

  25. Keith TA (2018) AIMAll http://aim.tkgristmill.com 17.11.14 edn., Overland Park

  26. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F (2013) NBO http://nbo6.chem.wisc.edu/. 6.0 edn., Theoretical chemistry institute, University of Wisconsin, Madison

  27. Silvi B (2010) TopMod http://www.lct.jussieu.fr/pagesperso/silvi/topmod.html. GNU edn. The TopMod

  28. Ziegler T, Rauk A (1977). Theor. Chim. Acta 46:1–10

  29. Bickelhaupt FM, Baerends EJ (2007) Kohn-Sham density functional theory: predicting and understanding chemistry. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry. John Wiley & Sons, Inc., pp 1–86

    Google Scholar 

  30. Kitaura K, Morokuma K . Int. J. Quant. Chem. 10:325 (1976)

  31. A. Vu Theoretical chemistry in Amsterdam density functional (ADF) program, http://www.scm.com.(2016)

Download references

Acknowledgments

This work has been partially supported by the FONDECYT REGULAR 1170837 (BH) DGI Projects no. CTQ2015-63997-C2. A generous allocation of computing time at the Centro de Computación Científica of the UAM is also acknowledged (AML).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Al Mokhtar Lamsabhi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 25.4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslancan, S., Herrera, B. & Lamsabhi, A.M. On the nature of the interaction of copper hydride and halide with substituted ethylene and acetylene. J Mol Model 26, 61 (2020). https://doi.org/10.1007/s00894-020-4320-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-4320-0

Keywords

Navigation