Skip to main content
Log in

Theoretical investigations on mechanisms and kinetics of CH2XO2 (X=F, Cl) with Cl reaction in the atmosphere

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The reactions of the CH2XO2 (X=F, Cl) with chlorine radical have been firstly investigated utilizing the BMC-CCSD//B3LYP method. The comprehensive calculations indicate that the association-elimination and SN2 displacement reaction mechanisms existed on the singlet potential energy surface (PES), and H-abstraction and SN2 displacement reaction mechanism existed on the triplet PES for the CH2XO2 (X=F, Cl) + Cl reactions. On the triplet PES, the dominant reactions are production of P3X (CHXO2 (X=F, Cl) + HCl) by direct H-abstraction. On the singlet PES, three energy-rich adducts, IM1X (CH2XOOCl (X=F, Cl)), IM2X (CH2XOClO (X=F, Cl)), and IM3X (CH2(OX)OCl (X=F, Cl)), are produced. RRKM-computed reveals that IM1X (CH2XOOCl (X=F, Cl)) produced by collisional stabilization occupied the reaction T ≤ 500 and 400 K, respectively, while P1X (CHXO (X=F, Cl) + HOCl) are forecasted to be the dominant products at high temperatures. The atmospheric lifetime of CH2FO2 and CH2ClO2 in Cl is around 1.18 and 2.50 weeks, respectively. Time-dependent density functional theory (TDDFT) computations imply that IM1X (CH2XOOCl (X=F, Cl)) will photolyze under the sunlight. The current results could guide us to well understand the mechanism of the CH2XO2 (X=F, Cl) + Cl reactions and may be helpful to understand Cl-combustion chemistry.

Predicted rate constant of the dominant pathways and the total rate constants at 760 Torr, N2 in the temperature region of 200-3000 K for the CH2XO2 (X=F, Cl) + Cl reactions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Houghton JT, Ding Y, Griggs DJ Climate change 2001: Thescientific basis. UK Cambridge University Press, Cambridge

  2. Brasseur GP, Orlando JJ, Tyndall GS (eds) (1999) Atomspheric chemistry and global change. Oxford University Press, New York

    Google Scholar 

  3. Tynadall GS, Cox RA, Granier C, Lesclaux R, Moortgat GK, Pilling MJ, Ravishankara AR, Wallington TJ (2001) Atmospheric chemistry of small organic peroxy radicals. J Geophys Res 106:157

    Google Scholar 

  4. Nishida S, Takahashi K, Matsumi Y, Chiappero M, Arguello G, Wallington TJ, Hurley MD, Ball JC (2004) CF3ONO2 yield in the gas phase reaction of CF3O2 radicals with NO. Chem Phys Lett 388:242–247

    Article  CAS  Google Scholar 

  5. Sehested J, Nielsen OJ, Wallington TJ (1993) Absolute rate constants for the reaction of NO with a series of peroxy radicals in the gas phase at 295 K. Chem Phys Lett 213:457–464

    Article  CAS  Google Scholar 

  6. Vaughan S, Canosa-Mas CE, Pfrang C, Shallcross DE, Watson L, Wayne RP (2006) Kinetic studies of reactions of the nitrate radical (NO3) with peroxy radicals (RO2): an indirect source of OH at night? Phys Chem Chem Phys 8:3749–3760

  7. Wallington TJ, Hurley MD, Schneider WF, Sehested J, Nielsen OJ (1994) Mechanistic study of the gas-phase reaction of CH2FO2 radicals with HO2. Chem Phys Lett 218:34–42

    Article  CAS  Google Scholar 

  8. Johnson D, Price DW, Marston G (2004) Correlation-type structure activity relationships for the kinetics of gas-phase RO2 self-reactions and reaction with HO2. Atmos Environ 38:1447–1458

    Article  CAS  Google Scholar 

  9. Wallington TJ, Hurley MD, Schneider WF (1996) Atmospheric chemistry of CH3Cl: mechanistic study of the reaction of CH2ClO2 radicals with HO2. Chem Phys Lett 251:164–173

    Article  CAS  Google Scholar 

  10. Catoire V, Lesclaux R, Lightfoot PD, Rayez MT (1994) Kinetic study of the reactions of CH2ClO2 with itself and with HO2 and theoretical study of the reactions of CH2ClO, between 251 and 600 K. J Phys Chem 98:2889–2898

    Article  CAS  Google Scholar 

  11. Wei WM, Zheng RH (2007) Theoretical study on the reaction mechanism of CH2ClO2 with HO2. J Mol Struct THEOCHEM 812:1–11

    Article  CAS  Google Scholar 

  12. Hou H, Deng LZ, Li JC, Wang BS (2005) A systematic computational study of the reactions of HO2 with RO2: the HO2+CH2ClO2, CHCl2O2, and CCl3O2 reactions. J Phys Chem A 109:9299–9309

    Article  CAS  Google Scholar 

  13. Shallcross DE, Raventos-Duran MT, Bardwell MW, Bacak A, Solman Z, Percival CJ (2005) A semi-empirical correlation for the rate coefficients for cross- and self-reactions of peroxy radicals in the gas-phase. Atmos Environ 39:763–771

    Article  CAS  Google Scholar 

  14. Villenave E, Lesclaux R (1996) Kinetics of the cross reactions of CH3O2 and C2H5O2 radicals with selected peroxy radicals. J Phys Chem 100:14372–14382

    Article  CAS  Google Scholar 

  15. Li HW, Tang YZ, Wang RS (2013) The theoretical study on the mechanisms and pathways of the atmospheric CF3O2 + X (X=F,Cl) reactions. Comput Theor Chem 1013:102–108

    Article  CAS  Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB, Gill PWM, Johnson BG, Robb MA, Cheeseman JR, Keith TA, Petersson GA, Pople JA (2010) Gaussian 09. Gaussian, Inc., Wallingford

    Google Scholar 

  17. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  18. Lee C, Yang W, Par RG (1988) Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys Rev B 37:785

    Article  CAS  Google Scholar 

  19. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  20. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li–F. J Comput Chem 14:294–301

    Article  Google Scholar 

  21. Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  22. Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523

    Article  CAS  Google Scholar 

  23. Lynch BJ, Zhao Y, Truhlar DG (2005) The 6-31B(d) basis set and the BMC-QCISD and BMC-CCSD multicoefficient correlation methods. J Phys Chem A 109:1643

    Article  CAS  Google Scholar 

  24. Zhao J, Zhang RY (2008) A theoretical investigation of nitrooxyalkyl peroxy radicals from NO3-initiated oxidation of isoprene. Atmos Environ 42:5849–5858

    Article  CAS  Google Scholar 

  25. Tang YZ, Nielsen CJ (2012) A systematic theoretical study of imines formation from the atmospheric reactions of RnNH2-n with O2 and NO2 (R=CH3 and CH3CH2; n=1 and 2). Atmos Environ 55:185–189

    Article  CAS  Google Scholar 

  26. Tang YZ, Sun HF, Sun JY, Zhang YJ, Wang RS (2014) Theoretical study on mechanisms and pathways of the CF3O2 + ClO reaction. Atmos Environ 92:367–375

    Article  CAS  Google Scholar 

  27. Tang YZ, Sun HF, Liu JH, Zhang DL, Wang RS, Dai JH (2013) Computational study on the mechanisms and reaction pathways of the CX3O2 + Br (X = F and Cl) reactions. J Fluor Chem 153:130–136

    Article  CAS  Google Scholar 

  28. NIST Computational chemistry comparison and benchmark database. http://srdata.nist.gov/cccbdb/

  29. Seinfeld JH, Pandis SN (1998) Atmoshperic chemistry and physics. Wiley, New York

    Google Scholar 

  30. Brown SS, Stutz J (2012) Nighttime radical observations and chemistry. Chem Soc Rev 41:6405–6447

    Article  CAS  Google Scholar 

  31. Chen L, Uchimaru T, Kutsuna S, Tokuhashi K, Sekiya A, Okamoto H (2009) Kinetics of gas-phase reactions of CH3OCH2CF3, CH3OCH3, CH3OCH2CH3, CH3CH2OCH2CH3, and CHF2CF2OCH2CF3 with NO3 radicals at 298 K. Int J Chem Kinet 41:490–497

    Article  CAS  Google Scholar 

  32. Csontos J, Rolok Z, Das S, Kallay M (2010) High-accuracy thermochemistry of atmosherically important fluorinated and chlorinated methane derivatives. J Phys Chem A 114:13093–13103

    Article  CAS  Google Scholar 

  33. Sander R (1999) Max-Planck institute of chemistry-air chemistry department, version 3. http://www.mpch-mainz.mpg.de/wsander/res/henry.html

  34. Blanco MB, Bejan I, Barnes I, Wiesen P, Teruel MA (2009) The Cl-initiated oxidation of CH3C(O)OCH=CH2, CH3C(O)OCH2CH=CH2, and CH2=CHC(O)O(CH2)3CH3 in the troposphere. Environ Sci Pollut Res 16:641–648

    Article  CAS  Google Scholar 

  35. Chang CT, Liu TH, Jeng FT (2004) Atmospheric concentrations of the Cl atom, ClO radical, and HO radical in the coastal marine boundary layer. Environ Res 94:67–74

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundations of China (Nos. 21707062 and 41775119), Scientific Research Starting Foundation of Mianyang Normal University (No. QD2016A007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunju Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Tang, Y., Sun, J. et al. Theoretical investigations on mechanisms and kinetics of CH2XO2 (X=F, Cl) with Cl reaction in the atmosphere. J Mol Model 26, 139 (2020). https://doi.org/10.1007/s00894-020-4318-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-4318-7

Keywords

Navigation